История освоения космоса. валентин глушко – основоположник отечественного ракетного двигателестроения. История предприятия Ученый, основоположник отечественного жидкостного ракетного двигателестроения академик ан ссср дважды герой социалистического труда

Академик
Валентин Петрович Глушко

Академик В.П.Глушко (1908-1989гг.) - основоположник отечественного ракетного двигателестроения, один из пионеров и творцов ракетно-космической техники.

Валентин Петрович Глушко - выдающийся ученый в области ракетно-космической техники, один из пионеров космонавтики, основоположник отечественного жидкостного ракетного двигателестроения.

В.П.Глушко родился в г. Одесса 2 сентября 1908 г. В школьные годы увлекался астрономией и организовал кружок юных любителей при Одесской астрономической обсерватории. Первая публикация В.П.Глушко называлась "Завоевание Землей Луны". Результаты его наблюдений метеорного потока в январе 1924 г., зарисовки Венеры, Марса и Юпитера, сделанные по собственным наблюдениям, были опубликованы в 1924 и 1925 гг. в изданиях Российского общества любителей мироведения (РОМЛ).

В это же время В.П.Глушко увлекся идеей космических полетов и с 1923 г. переписывался с К.Э.Циолковским.

В.П.Глушко в годы работы в Реактивном научно-исследовательском институте (РНИИ). Москва. 1934 год.

В 1925 г. поступил на физико-математический факультет Ленинградского университета. Темой дипломной работы был проект электрического ракетного двигателя (ЭРД). С 1929 г. по 1933 г. работал в Газодинамической лаборатории (ГДЛ) Военно-научно-исследовательского комитета при Реввоенсовете СССР, где сформировал подразделение по разработке ЭРД, ЖРД и ракет на жидком топливе. В 1931 - 1933 гг. под руководством В.П.Глушко были разработаны первые отечественные жидкостные ракетные двигатели - ОРМ (опытный реактивный мотор). В 1933 г. был организован первый в мире Реактивный научно-исследовательский институт (РНИИ). Подразделение, руководимое В.П.Глушко, продолжило работу в составе РНИИ, где наиболее значимым результатом было создание ЖРД ОРМ-65, предназначавшегося для ракетоплана РП-318 и крылатой ракеты 212 конструкции С.П.Королева.

ОРМ-65 - жидкостной ракетный двигатель, созданный В.П.Глушко в 30-х годах для установки на ракетоплане РП-318 и крылатой ракете 212 конструкции С.П.Королева.

В период сталинских репрессий В.П.Глушко был арестован 23 марта 1938 г. и на основании сфабрикованного НКВД дела осужден на 8 лет лагерей (в 1939 г.). В заключении В.П.Глушко работал над созданием самолетных реактивных ускорителей. За успешное выполнение этих работ в 1944 г. В.П.Глушко и его сотрудники были освобождены со снятием судимости. Реабилитирован В.П.Глушко только в 1955 г.

В 1945 г. В.П.Глушко с группой специалистов был направлен в Германию для ознакомления с трофейной ракетной техникой. Начиная с 1947 г. в ОКБ-456 (в подмосковном городе Химки), руководимым В.П.Глушко была создана серия ракетных двигателей оригинальной конструкции.

Двигатели РД-107 и РД-108, созданные в КБ В.П.Глушко, были установлены на первой межконтинентальной ракете Р-7 (1957 г.), на ракетах-носителях, осуществивших выведение на орбиты искусственных спутников Земли и Луны, запуски автоматических станций к Луне, Венере и Марсу, запуск пилотируемых кораблей "Восток", "Восход" и "Союз".

ЖРД РД-108 - двигатель второй ступени ракеты Р-7 и ракет-носителей "Восток", "Восход", "Молния", "Союз". Двигатели РД-107 и РД-108, созданные в КБ В.П.Глушко, устанавливались на первой и второй ступенях этих ракет-носителей. Они обеспечили прорыв человечества в космос и сегодня продолжают способствовать выполнению российской космической программы.

Двигатели нового типа РД-253 конструкции В.П.Глушко были установлены на первой ступени ракеты-носителя "Протон", которая обладает втрое большей грузоподъемностью, чем ракета "Союз".

В.П.Глушко с космонавтами Ю.А.Гагариным и П.Р.Поповичем в своем рабочем кабинете. 1963 год.

В.П.Глушко с космонавтами Ю.А.Гагариным и П.Р.Поповичем в своем рабочем кабинете. 1963 год.

Созданный в КБ В.П.Глушко ЖРД РД-253 - двигатель первой ступени ракеты-носителя "Протон".

Ракета-носитель "Протон" на стартовой позиции космодрома.

С помощью ракеты "Протон" во второй половине 60-х годов и в 70-х годах осуществлялись запуски тяжелых исследовательских спутников Земли и автоматических станций для исследования Луны, Венеры и Марса, в том числе облет Луны с возвращением космического аппарата на Землю, доставка с Луны образцов лунного грунта и доставка на Луну первых луноходов.

В.П.Глушко в рабочем кабинете. На книжной полке - рисованный оригинал фрагмента "Полной карты Луны" (район кратера Коперник), который был подарен Валентину Петровичу Отделом физики Луны и планет ГАИШ в день 60-летия (1968 г.).

В.П.Глушко уделял огромное внимание научному содержанию исследований, проводимых с помощью создаваемой под его руководством космической техники. Большое значение он придавал исследованиям Солнечной системы. При его активной поддержке в ГАИШ МГУ совместно со специализированными картографическими организациями удалось подготовить несколько изданий лунных карт и глобусов Луны.

В.П.Глушко и Председатель Государственной комиссии К.А.Керимов с женщинами-космонавтами В.Л.Пономаревой, В.В.Терешковой и Т.Д.Кузнецовой в демонстрационном зале (1968 г.). В центре стола стоит глобус Луны, подготовленный в ГАИШ (издание 1967г.). Левее и ниже виден самый первый глобус Луны (издание 1961 года), на котором около трети поверхности занимает белый, пустой сектор, соответствующий той части лунного шара, что не была сфотографирована во время первой космической съемки Луны в 1959 г.

Деловая записка В.П.Глушко, приложенная к материалам, направленным заведующему Отделом физики Луны Ю.Н.Липскому. Взаимодействие В.П.Глушко с Отделом физики Луны и планет ГАИШ происходило постоянно. 1970 год.

В.П.Глушко вручает медаль 40-летия ГДЛ-ОКБ начальнику отдела предприятия М.Р.Гнесину (1969 г.). На заднем плане рядом с макетами реактивных двигателей стоит глобус Луны, подготовленный в ГАИШ (1967г.), из личной коллекции В.П.Глушко.

В 1974 г. В.П.Глушко был назначен генеральным конструктором Научно-производственного объединения "Энергия", соединившем ОКБ, основанное В.П.Глушко, и КБ, руководимое ранее С.П.Королевым. Наряду с проводимыми под руководством В.П.Глушко текущими запусками орбитальных станций и космических кораблей, в НПО "Энергия" по его инициативе началась разработка новой ракетно-космической системы "Энергия" с грузоподъемностью более 100 т.

Среди других задач, сверхтяжелый носитель "Энергия" по замыслу В.П.Глушко предназначался для обеспечения пилотируемых полетов на Луну и создания долговременной обитаемой базы на лунной поверхности. Отдел исследований Луны и планет ГАИШ был привлечен В.П.Глушко для научного обеспечения проекта обитаемой лунной базы. В рамках договора НПО "Энергия" с ГАИШ в течении ряда лет велись работы по научному обоснованию выбора места базирования на лунной поверхности. Это сотрудничество продолжалось почти 15 лет.

Надпись, сделанная В.П.Глушко на своей книге

Надпись, сделанная В.П.Глушко на своей книге, подаренной им заведующему Отделом исследований Луны и планет ГАИШ В.В.Шевченко (1978 г.). Сотрудничество коллектива Отдела с НПО "Энергия", руководимым В.П.Глушко, вступило в это время в новую активную фазу.

В процессе совместных работ у руководства Отдела часто возникали просьбы к В.П.Глушко о содействии в том или ином вопросе. Валентин Петрович был неизменно внимательным и доброжелательным. Ни одно из обращений к нему не оставалось безответным. В этом случае его телефонный разговор, как правило, начинался шутливой фразой: "Владислав Владимирович, я вам докладываю..."

Знаком внимания были регулярные праздничные подравления.

Для новой ракеты-носителя был создан самый мощный в мире ЖРД РД-170. Первый запуск ракеты "Энергия" состоялся 15 мая 1987 г. В ноябре 1988 г. состоялся запуск ракетно-космической системы "Энергия-Буран" с возвращением и посадкой орбитального корабля "Буран" в автоматическом режиме.

Утром 27 марта 1943 года первый советский реактивный истребитель «БИ-1» взлетел с аэродрома НИИ ВВС Кольцово в Свердловской области. Проходил седьмой по счету испытательный полет на достижение максимальной скорости. Достигнув двухкилометровой высоты и набрав скорость около 800 км/ч, самолет на 78-й секунде после выработки топлива неожиданно перешел в пике и столкнулся с землей. Сидевший за штурвалом опытный летчик-испытатель Г. Я. Бахчиванджи погиб. Эта катастрофа стала важным этапом в развитии самолетов с жидкостными ракетными двигателями в СССР, но хотя работы по ним и продолжались до конца 1940-х годов, данное направление развития авиации оказалось тупиковым. Тем не менее эти первые, хотя и не слишком удачные шаги оказали серьезное влияние на всю дальнейшую послевоенного развития советского авиа- и ракетостроения…

Вступление в «реактивный» клуб

«За эрой аэропланов винтовых должна следовать эра аэропланов реактивных…» – эти слова основоположника реактивной техники К. Э. Циолковского стали получать реальное воплощение уже в середине 1930-х годов ХХ века.

К этому моменту стало ясно, что дальнейшее значительное увеличение скорости полета самолетов за счет возрастания мощности поршневых моторов и более совершенной аэродинамической формы практически невозможно. На самолетах должны были устанавливаться моторы, мощность которых не могла быть уже увеличена без чрезмерного возрастания массы двигателя. Так, для увеличения скорости полета истребителя с 650 до 1000 км/ч необходимо было мощность поршневого мотора увеличить в 6 (!) раз.

Было очевидно, что на смену поршневому двигателю должен был прийти реактивный, который, имея меньшие поперечные размеры, позволял бы достигать больших скоростей, давая большую тягу на единицу веса.


Реактивные двигатели разделяются на два основных класса: воздушно-реактивные, которые используют энергию окисления горючего кислородом воздуха, забираемого из атмосферы, и ракетные двигатели, содержащие все компоненты рабочего тела на борту и способные работать в любой среде, в том числе и в безвоздушной. К первому типу относятся турбореактивные (ТРД), пульсирующие воздушно-реактивные (ПуВРД) и прямоточные воздушно-реактивные (ПВРД), а ко второму - жидкостные ракетные (ЖРД) и твердотопливные ракетные (ТТРД) двигатели.

Первые образцы реактивной техники появились в странах, где традиции в области развития науки и техники и уровень авиационной промышленности были чрезвычайно высоки. Это, в первую очередь, Германия, США, а также Англия, Италия. В 1930 г. проект первого ТРД запатентовал англичанин Фрэнк Уиттл, затем первую рабочую модель двигателя собрал в 1935 г. в Германии Ганс фон Охайн, а в 1937-м француз Рене Ледюк получил правительственный заказ на создание ПВРД…

В СССР же практическая работа над «реактивной» тематикой велась главным образом в направлении жидкостных ракетных двигателей. Основоположником ракетного двигателестроения в СССР был В. П. Глушко. Он в 1930 г., тогда сотрудник Газодинамической лаборатории (ГДЛ) в Ленинграде, являвшейся в то время единственным КБ в мире по разработке твердотопливных ракет, создал первый отечественный ЖРД ОРМ-1. А в Москве в 1931–1933 гг. ученый и конструктор Группы изучения реактивного движения (ГИРД) Ф. Л. Цандер разработал ЖРД ОР-1 и ОР- 2.

Новый мощный импульс развитию реактивной техники в СССР придало назначение М. Н. Тухачевского в 1931 г. на пост заместителя наркома обороны и начальника вооружения РККА. Именно он настоял на принятии в 1932 г. постановления Совнаркома «О разработке паротурбинных и реактивных двигателей, а также самолетов на реактивной тяге…». Начатые после этого работы в Харьковском авиационном институте позволили только к 1941 г. создать рабочую модель первого советского ТРД конструкции А. М. Люльки и способствовали старту 17 августа 1933 г. первой в СССР жидкостной ракеты ГИРД-09, которая достигла высоты 400 м.


Но отсутствие более ощутимых результатов подтолкнуло Тухачевского в сентябре 1933 г. к объединению ГДЛ и ГИРД в единый Реактивный научно-исследовательский институт (РНИИ) во главе с ленинградцем, военным инженером 1 ранга И. Т. Клейменовым. Его заместителем был назначен будущий Главный конструктор космической программы, москвич С. П. Королев, который через два года в 1935 г. был назначен начальником отдела ракетных летательных аппаратов. И хотя РНИИ подчинялся управлению боеприпасов Наркомата тяжелой промышленности и основной его темой была разработка ракетных снарядов (будущей «Катюши»), Королеву удалось вместе с Глушко рассчитать самые выгодные конструктивные схемы аппаратов, типы двигателей и систем управления, виды топлива и материалов. В результате в его отделе к 1938 г. была разработана экспериментальная система управляемого ракетного , включающая проекты жидкостных крылатой «212» и баллистической «204» ракет дальнего действия с гироскопическим управлением, авиационных ракет для стрельбы по воздушным и наземным целям, зенитных твердотопливных ракет с наведением по световому и радиолучу.

Стремясь получить поддержку военного руководства и в разработке высотного ракетоплана «218», Королев обосновал концепцию ракетного истребителя-перехватчика, способного за несколько минут достигать большой высоты и атаковать самолеты, прорвавшиеся к защищаемому объекту.

Но развернувшаяся в армии после ареста Тухачевского волна массовых репрессий докатилась и до РНИИ. Там была «раскрыта» контрреволюционная троцкистская организация, а ее «участники» И. Т. Клейменов, Г. Э. Лангемак расстреляны, а Глушко и Королев осуждены на 8 лет лагерей.

Эти события затормозили развитие реактивной техники в СССР и позволили вырваться вперед европейским конструкторам. 30 июня 1939 г. немецкий пилот Эрих Варзиц поднял в воздух первый в мире реактивный самолет с ЖРД конструктора Гельмута Вальтера «Хейнкель» He-176, достигнув скорости в 700 км/ч, а через два месяца и первый в мире реактивный самолет с ТРД «Хейнкель» He-178, оснащенный двигателем Ганса фон Охайна, «HeS-3 B» с тягой 510 кг и скоростью 750 км/ч. Через год в августе 1940 г. взлетел итальянский «Капрони-Кампини N1», а в мае 1941 г. совершил свой первый полет британский «Глостер Пионер» Е.28/29 с ТРД «Уиттл» W-1 конструктора Фрэнка Уиттла.

Таким образом, лидером в реактивной гонке становилась нацистская Германия, которая кроме авиационных программ начала осуществлять и ракетную программу под руководством Вернера фон Брауна на секретном полигоне в Пенемюнде…


Но все-таки, хотя массовые репрессии в СССР и нанесли существенный ущерб, но не смогли остановить все работы по столь очевидной реактивной тематике, которые начал еще Королев. В 1938 г. РНИИ был переименован в НИИ-3, теперь «королевский» ракетоплан «218–1» стал обозначаться «РП- 318–1». Новые ведущие конструкторы инженеры А. Щербаков, А. Палло заменили ЖРД ОРМ-65 «врага народа» В. П. Глушко на азотно-кислотно-керосиновый двигатель «РДА-1–150» конструкции Л. С. Душкина.

И вот почти после года испытаний в феврале 1940 г. состоялся первый полет «РП-318–1» на буксире за самолетом «Р 5». Летчик-испытатель?В. П. Федоров на высоте 2800 м отцепил буксировочный трос и запустил ракетный двигатель. За ракетопланом появилось небольшое облачко от зажигательного пиропатрона, потом бурый дым, затем огненная струя длиной около метра. «РП-318–1», развив максимальную скорость - всего лишь в 165 км/ч, перешел в полет с набором высоты.

Это скромное достижение все же позволило СССР вступить в члены довоенного «реактивного клуба» ведущих авиационных держав…

«Ближний истребитель»

Успехи немецких конструкторов не прошли незамеченными для советского руководства. В июле 1940 г. Комитет обороны при Совнаркоме принял постановление, определившее создание первых отечественных самолетов с реактивными двигателями. В постановлении, в частности, предусматривалось решение вопросов «о применении реактивных двигателей большой мощности для сверхскоростных стратосферных полетов»…

Массированные налеты люфтваффе на британские города и отсутствие в Советском Союзе достаточного количества радиолокационных станций выявили необходимость создания истребителя-перехватчика для прикрытия особо важных объектов, над проектом которого с весны 1941 г. начали работать молодые инженеры А. Я. Березняк и А. М. Исаев из ОКБ конструктора В. Ф. Болховитинова. Концепция их ракетного перехватчика с двигателем Душкина или «ближнего истребителя» опиралась на предложение Королева, выдвинутое еще в 1938 г.

«Ближний истребитель» при появлении самолета противника должен был быстро взлететь и, обладая высокой скороподъемностью и скоростью, догнать и уничтожить врага в первой атаке, затем после выработки топлива, используя запас высоты и скорости, спланировать на посадку.

Проект отличался необычайной простотой и дешевизной - вся конструкция должна была быть цельнодеревянной из клееной фанеры. Из металла изготовлялись рама двигателя, защита пилота и шасси, которые убирались под воздействием сжатого воздуха.

С началом войны Болховитинов привлек к работе над самолетом все ОКБ. В июле 1941 г. эскизный проект с пояснительной запиской был отправлен Сталину, и в августе Государственный комитет обороны принял решение о срочной постройке перехватчика, который был необходим частям ПВО Москвы. Согласно приказу по Наркомату авиапромышленности на изготовление машины отводилось 35 дней.

Самолет, получивший название «БИ» (ближний истребитель или, как в дальнейшем интерпретировали журналисты, «Березняк - Исаев») строили почти без детальных рабочих чертежей, вычерчивая на фанере его части в натуральную величину. Обшивка фюзеляжа выклеивалась на болванке из шпона, затем крепилась к каркасу. Киль выполнялся заодно с фюзеляжем, как и тонкое деревянное крыло кессонной конструкции, и обтягивался полотном. Деревянным был даже лафет для двух 20-мм пушек ШВАК с боезапасом из 90 снарядов. ЖРД Д-1 А-1100 устанавливался в хвостовой части фюзеляжа. Двигатель расходовал 6 кг керосина и кислоты в секунду. Общий запас топлива на борту самолета, равный 705 кг, обеспечивал работу двигателя в течение почти 2 мин. Расчетная взлетная масса самолета «БИ» составляла 1650 кг при массе пустого 805 кг.


В целях сокращения времени создания перехватчика по требованию заместителя наркома авиационной промышленности по опытному самолетостроению А. С. Яковлева планер самолета «БИ» был исследован в натурной аэродинамической трубе ЦАГИ, a на аэродроме летчик-испытатель Б. Н. Кудрин начал пробежки и подлеты на буксире. С разработкой силовой установки пришлось изрядно повозиться, поскольку азотная кислота разъедала баки и проводку и оказывала вредное воздействие на человека.

Однако все работы были прерваны в связи с эвакуацией ОКБ на Урал в поселок Белимбай в октябре 1941 г. Там с целью отладки работы систем ЖРД смонтировали наземный стенд - фюзеляж «БИ» с камерой сгорания, баками и трубопроводами. К весне 1942 г. программа наземных испытаний была завершена. Вскоре с конструкцией самолета и стендовой испытательной установкой ознакомился выпущенный из тюрьмы Глушко.

Летные испытания уникального истребителя поручили капитану Бахчиванджи, который совершил 65 боевых вылетов на фронте и сбил 5 немецких самолетов. Он предварительно освоил управление системами на стенде.

Утро 15 мая 1942 г. навсегда вошло в историю отечественной космонавтики и авиации, взлетом с грунта первого советского самолета с жидкостным реактивным двигателем. Полет, который продолжался 3 мин 9 сек на скорости 400 км/ч и при скороподъемности - 23 м/с, произвел сильное впечатление на всех присутствующих. Вот как об этом вспоминал Болховитинов в 1962 г.: «Для нас, стоявших на земле, этот взлет был необычным. Непривычно быстро набирая скорость, самолет через 10 секунд оторвался от земли и через 30 секунд скрылся из глаз. Только пламя двигателя говорило о том, где он находится. Так прошло несколько минут. Не скрою, у меня затряслись поджилки».

Члены государственной комиссии отметили в официальном акте, что «взлет и полет самолета «БИ-1» с ракетным двигателем, впервые примененным в качестве основного двигателя самолета, доказал возможность практического осуществления полета на новом принципе, что открывает новое направление развития авиации». Летчик-испытатель отмечал, что полет на самолете «БИ» в сравнении с обычными типами самолетов исключительно приятен, а по легкости управления самолет превосходит другие истребители.

Через день после испытаний в Билимбае была устроена торжественная встреча и митинг. Над столом президиума висел плакат: «Привет капитану Бахчиванджи, летчику, совершившему полет в новое!».


Вскоре последовало решение ГКО о постройке серии из 20 самолетов «БИ- ВС», где в дополнение к двум пушкам перед кабиной летчика устанавливалась бомбовая кассета, в которой размещалось десять мелких противосамолетных бомб массой по 2,5 кг.

Всего на истребителе «БИ» было совершено 7 испытательных полетов, каждый из которых фиксировал лучшие летные показатели самолета. Полеты проходили без летных происшествий, лишь при посадках случались незначительные повреждения шасси.

Но 27 марта 1943 г. при разгоне до скорости 800 км/ч на высоте 2000 м третий опытный экземпляр самопроизвольно перешел в пикирование и врезался в землю неподалеку от аэродрома. Комиссия, расследовавшая обстоятельства катастрофы и гибели летчика-испытателя Бахчиванджи, не смогла установить причины затягивания самолета в пике, отмечая, что еще не изучены явления, происходящие при скоростях полета порядка 800 –1000 км/ч.

Катастрофа больно ударилa по репутации ОКБ Болховитинова - все недостроенные перехватчики «БИ-ВС» были уничтожены. И хотя позднее в 1943–1944 гг. проектировалась модификация «БИ-7» с прямоточными воздушно-реактивными двигателями на концах крыла, а в январе 1945 г. летчик Б. Н. Кудрин выполнил последние два полета на «БИ-1», все работы по самолету были прекращены.

И все-таки ЖРД

Наиболее успешно была реализована концепция ракетного истребителя в Германии, где с января 1939 г. в специальном «Отделе L» фирмы «Мессершмитт», куда из немецкого планерного института перешел профессор А. Липпиш со своими сотрудниками, шла работа над «проектом Х» - «объектовым» перехватчиком «Me-163» «Комет» с ЖРД, работающим на смеси гидразина, метанола и воды. Это был самолет нетрадиционной «безхвостой» схемы, который ради максимального снижения веса взлетал со специальной тележки, а садился на выдвигаемую из фюзеляжа лыжу. Первый полет на максимальной тяге летчик-испытатель Дитмар выполнил в августе 1941 г., а уже в октябре на нем впервые в истории была преодолена отметка в 1000 км/ч. Потребовалось более двух лет испытаний и доводки, прежде чем «Ме-163» был запущен в серию. Он стал первым самолетом с ЖРД, участвовавшим в боях с мая 1944 г. И хотя до февраля 1945 г. было выпущено более 300 перехватчиков, в строю находилось не более 80 боеготовых самолетов.

Боевое применение истребителей «Ме-163» показало несостоятельность концепции ракетного перехватчика. Из-за большой скорости сближения немецкие пилоты не успевали точно прицелиться, а ограниченный запас топлива (только на 8 минут полета) не давал возможности для второй атаки. После выработки топлива на планировании перехватчики становились легкой добычей американских истребителей - «Мустангов» и «Тандерболтов». До окончания боевых действий в Европе «Ме-163» сбили 9 самолетов противника, потеряв при этом 14 машин. Однако потери от аварий и катастроф в три раза превышали боевые. Ненадежность и малый радиус действия «Ме-163» способствовали тому, что руководством люфтваффе были запущены в серийное производство другие реактивные истребители «Ме- 262» и «Не-162».

Руководство советской же авиапромышленности в 1941–1943 гг. было сосредоточено на валовом выпуске максимального количества боевых самолетов и улучшении серийных образцов и не было заинтересовано в развитии перспективных работ по реактивной технике. Таким образом, катастрофа «БИ-1» поставила крест и на других проектах советских ракетных перехватчиков: «302» Андрея Костикова, «Р-114» Роберто Бартини и «РП» Королева. Здесь сыграло свою роль то недоверие, которое заместитель Сталина по опытному самолетостроению Яковлев испытывал к реактивной технике, считая ее делом еще очень далекого будущего.


Но сведения из Германии и стран союзников стали причиной того, что в феврале 1944 г. Государственный комитет обороны в своем постановлении указал на нетерпимое положение с развитием реактивной техники в стране. При этом все разработки в этом отношении сосредоточивались теперь во вновь организованном НИИ реактивной авиации, заместителем начальника которого был назначен Болховитинов. В этом институте были собраны ранее работавшие на различных предприятиях группы конструкторов реактивных двигателей во главе с М М. Бондарюком, В. П. Глушко, Л. С. Душкиным, А. М. Исаевым, A. M. Люлькой.

В мае 1944 г. ГКО принял еще одно постановление, наметившее широкую программу строительства реактивной авиационной техники. Этим документом предусматривалось создание модификаций Як-3, Ла-7 и Су-6 с ускорительным ЖРД, постройка «чисто ракетных» самолетов в ОКБ Яковлева и Поликарпова, экспериментального самолета Лавочкина с ТРД, а также истребителей с воздушно-реактивными моторокомпрессорными двигателями в ОКБ Микояна и Сухого. Для этого в конструкторском бюро Сухого был создан истребитель «Су-7», в котором совместно с поршневым мотором работал жидкостно-реактивный «РД-1», разработанный Глушко.

Полеты на «Су-7» начались в 1945 г. При включении «РД-1» скорость самолета увеличивалась в среднем на 115 км/ч, но испытания пришлось прекратить из-за частого выхода из строя реактивного двигателя. Похожая ситуация сложилась в конструкторских бюро Лавочкина и Яковлева. На одном из опытных самолетов «Ла-7 Р» ускоритель взорвался в полете, летчику-испытателю чудом удалось спастись. При испытании же «Як-3 РД» летчик-испытатель Виктор Расторгуев сумел достичь скорости в 782 км/ч, но при выполнении полета самолет взорвался, пилот погиб. Участившиеся катастрофы привели к тому, что испытания самолетов с «РД-1» были остановлены.

Свой вклад внес в эту работу и освобожденный из заключения Королев. В 1945 г. за участие в разработке и испытании ракетных установок для боевых самолетов «Пе-2» и «Ла-5 ВИ» он был награжден орденом «Знак Почета».

Одним из самых интересных проектов перехватчиков с ракетным двигателем стал проект сверхзвукового (!!!) истребителя «РМ-1» или «САМ-29», разработанного в конце 1944 г. незаслуженно забытым авиаконструктором А. С. Москалевым. Самолет выполнялся по схеме «летающее крыло» треугольной формы с овальными передними кромками, и при его разработке использовался предвоенный опыт создания самолетов «Сигма» и «Стрела». Проект «РМ-1» должен был иметь следующие характеристики: экипаж - 1 человек, силовая установка - «РД2 МЗВ» с тягой 1590 кгс, размах крыла - 8,1 м и его площадь - 28,0 м2, взлетный вес - 1600 кг, максимальная скорость - 2200 км/ч (и это в 1945 г.!). В ЦАГИ считали, что строительство и летные испытания «РМ- 1» - одно из наиболее перспективных направлений в будущем развитии советской авиации.


В ноябре 1945 г. приказ о постройке «РМ-1» был подписан министром А. И. Шахуриным, но… в январе 1946 г. было запущено печально знаменитое «авиационное дело», и Шахурин был осужден, а приказ о строительстве «РМ-1» отменен Яковлевым…

Послевоенное знакомство с немецкими трофеями вскрыло значительное отставание в развитии отечественного реактивного самолетостроения. Чтобы сократить разрыв, было принято решение использовать немецкие двигатели «JUMO-004» и «BMW-003», а затем на их основе создать собственные. Эти двигатели получили наименование «РД-10» и «РД-20».

В 1945 г. одновременно с заданием построить истребитель «МиГ-9» с двумя « РД-20» перед ОКБ Микояна была поставлена задача разработать экспериментальный истребитель-перехватчик с ЖРД «РД-2 М-3 В» и скоростью 1000 км/ч. Самолет, получивший обозначение И-270 («Ж»), вскоре был построен, но его дальнейшие испытания не показали преимущества ракетного истребителя перед самолетом с ТРД, и работы по этой теме закрыли. В дальнейшем жидкостные реактивные двигатели в авиации стали применятся только лишь на опытных и экспериментальных самолетах или в качестве авиационных ускорителей.

Они были первыми

«…Страшно вспомнить, как мало я тогда знал и понимал. Сегодня говорят: «открыватели», «первопроходцы». А мы в потемках шли и набивали здоровенные шишки. Ни специальной литературы, ни методики, ни налаженного эксперимента. Каменный век реактивной авиации. Были мы оба законченные лопухи!..» - так вспоминал о создании «БИ-1» Алексей Исаев. Да, действительно, из-за своего колоссального расхода топлива самолеты с жидкостно-ракетными двигателями не прижились в авиации, навсегда уступив место турбореактивным. Но сделав свои первые шаги в авиации, ЖРД прочно заняли свое место в ракетостроении.

В СССР в годы войны в этом отношении прорывом стало создание истребителя «БИ-1», и здесь особая заслуга Болховитинова, который взял под свое крыло и сумел привлечь к работе таких будущих светил советского ракетостроения и космонавтики, как: Василий Мишин, первый заместитель главного конструктора Королева, Николай Пилюгин, Борис Черток - главные конструкторы систем управления многих боевых ракет и носителей, Константин Бушуев - руководитель проекта «Союз» - «Аполлон», Александр Березняк - конструктор крылатых ракет, Алексей Исаев - разработчик ЖРД для ракет подводных лодок и космических аппаратов, Архип Люлька - автор и первый разработчик отечественных турбореактивных двигателей…


Получила разгадку и тайна гибели Бахчиванджи. В 1943 г. в ЦАГИ в эксплуатацию была пущена аэродинамическая труба больших скоростей Т-106. В ней сразу же начали проводить широкие исследования моделей самолетов и их элементов при больших дозвуковых скоростях. Была испытана и модель самолета «БИ» для выявления причин катастрофы. По результатам испытаний стало ясно, что «БИ» разбился из-за особенностей обтекания прямого крыла и оперения на околозвуковых скоростях и возникающего при этом явления затягивания самолета в пикирование, преодолеть которое летчик не мог. Катастрофа 27 марта 1943 г. «БИ-1» стала первой, которая позволила советским авиаконструкторам решить проблему «волнового кризиса» путем установки стреловидного крыла на истребителе «МиГ-15». Спустя 30 лет в 1973 г. Бахчиванджи был посмертно удостоен звания Героя Советского Союза. Юрий Гагарин так отозвался о нем:

«…Без полетов Григория Бахчиванджи возможно бы не было и 12 апреля 1961 г. ». Кто мог знать, что ровно через 25 лет, 27 марта 1968 года, как и Бахчиванджи в возрасте 34 лет, Гагарин тоже погибнет в авиакатастрофе. Их действительно объединило главное - они были первыми.

Ctrl Enter

Заметили ошЫ бку Выделите текст и нажмите Ctrl+Enter

Российский ученый-конструктор, основоположник отечественного жидкостного ракетного двигателестроения, один из пионеров ракетной техники, академик АН СССР (1958), дважды Герой Социалистического Труда (1956, 1961). Конструктор первого в мире электротермического ракетного двигателя (1929—33), первых отечественных жидкостных ракетных двигателей (1930—31). Под руководством Глушко созданы жидкостные ракетные двигатели, установленные на многих отечественных космических ракетах. Ленинская премия (1957), Государственная премия СССР (1967, 1984).

Документальные фильмы о Глушко В. П.

(видеоматериалы из свободного доступа Интернета)

Траектория Глушко». Империя Королева. Фильм 5-й — Россия, телекомпания "Цивилизация", 2006. Хр. - 26 мин.Судьба трех "космических братьев-близнецов", трех кораблей многоразового использования, получивших грозное наименование "Буран" - одна из самых драматических в истории нашей космонавтики.

Энергия триумфа. Тайны забытых побед — Россия, телекомпания "Народное кино", 2007 - 2008. Хр. - 26 мин.
Фильм из цикла "Тайны забытых побед". 15 июня 1988 года с космодрома Байконур успешно стартовала в космос самая мощная в мире ракета-носитель "Энергия". Она могла выводить в космос полезную нагрузку весом в 100 тонн - 2 железнодорожных вагона! И, хотя по решению Правительства СССР, она предназначалась для вывода на орбиту нашего корабля многоразового использования "Буран", эта ракета была универсальной и могла использоваться для полетов на Луну и к другим планетам.

Конструктор Глушко В. П.

Видеоэнциклопедия "Конструкторы" телестудии Роскосмоса.
Глушко Валентин Петрович (1908-1989) - советский учёный в области ракетно-космической техники; один из пионеров ракетно-космической техники; основоположник отечественного жидкостного ракетного двигателестроения, Главный конструктор космических систем, генеральный конструктор многоразового ракетно-космического комплекса «Энергия - Буран», академик АН УССР и АН СССР, лауреат Ленинской премии, дважды лауреат Государственной премии СССР, дважды Герой Социалистического Труда.

Последняя любовь бога огня

Телестудия Роскосмоса, 2008.
Двигатели Глушко стоят практически на всех советских космических ракетах- носителях - от "Востоков" до "Союзов". Первый спутник и первый космонавт, первая ракета с ядерным зарядом и первые стратегические ракеты… Возможно, всех этих побед не было бы, если бы не было Валентина Глушко. Даже противники этого человека говорят о том, американцы оказались первыми на Луне только потому, что Глушко отказался делать двигатель для королёвской лунной ракеты Н-1... Хронометраж - 52 мин.

Космический заправщик

ООО "ОПАЛ-Медиа" по заказу ООО "Русский исторический канал", 2007. Хр. - 52 мин.
Далеко не всем известно, что одним из основателей постройки ракетно-космической техники был Валентин Петрович Глушко. Без его идеи жидкостно-ракетного двигателя не было бы и советской космонавтики.

Конструктор Глушко и его время

4-х серийный документальный фильм, ГП «Союзкиносервис» , 2003. Хр. - 4х26 мин.
Имя Сергея Королева стало широко известно 14 февраля 1966 года в день его смерти. О генеральном конструкторе Валентине Петровиче Глушко мало кто знает и сегодня. Вся его жизнь проходила под грифом "секрeтно". Зек №134, затем сверхсекретный главный конструктор закрытого КБ. Больше 10 лет его нет среди нас, но по прежнему кипят страстные споры вокруг его личности. По псевдониму "Профессор Петрович" его упорно вычисляли в годы холодной войны западные разведки. Кто он загадочный Петрович?

УДК 624.45:93

М. В. Краев, В. П. Назаров

ОСНОВОПОЛОЖНИК ОТЕЧЕСТВЕННОГО РАКЕТНО-КОСМИЧЕСКОГО

ДВИГАТЕЛЕСТРОЕНИЯ

К 100-летию со дня рождения академика В. П. Глушко

Рассматриваются основные этапы жизни и творческой деятельности выдающегося ученого и конструктора ракетно-космических двигателей, академика В. П. Глушко. Представлен его вклад в развитие отечественной и мировой космонавтики. Проведен анализ научно-технических тенденций развития ракетно-космического двигателестроения.

Научно-техническая общественность России и многих зарубежных стран готовится достойно отметить знаменательную дату - столетие со дня рождения выдающегося ученого и конструктора XX в., основоположника отечественного ракетно-космического двигателестроения академика Валентина Петровича Глушко.

В. П. Глушко родился 2 сентября 1908 г. в Одессе. В юные годы, обучаясь в одесской профессионально-технической школе, он увлекся фантастической идеей межпланетных путешествий. Это увлечение очень быстро превратилось в твердое убеждение - посвятить свою жизнь осуществлению космических полетов. Уже тогда он уяснил, что для серьезной реализации этой мечты необходимы глубокие знания и исключительная целеустремленность. Свой путь в космонавтику В. П. Глушко начал с изучения астрономии и наблюдений звездного неба в Первой государственной астрономической обсерватории Одессы. Проявляя незаурядные организаторские способности, он создал под своим руководством «Кружок молодых мирове-дов», который активно занимался изучением фундаментальных естественно-научных и прикладных проблем. О серьезности увлечения В. П. Глушко свидетельствуют собранные им в те годы материалы для написания двух научных книг. Издание их в те годы не состоялось, однако сохранившиеся материалы и сейчас, по отзывам специалистов, представляют интерес.

Огромное влияние на формирование научного мировоззрения В. П. Глушко оказало его знакомство с трудами К. Э. Циолковского. Между ними установилась переписка, которая продолжалась несколько лет. К. Э. Циолковский высылал в Одессу В. П. Глушко издания своих трудов, высказывал рекомендации и советы по практическому применению теории космических полетов. Переписка юного энтузиаста космонавтики В. П. Глушко и ученого-теоретика К. Э. Циолковского - это уникальное явление в истории отечественной науки.

В 1925 г. В. П. Глушко поступил на физико-математический факультет Ленинградского университета. «Мир университета увлек меня, перенеся в новое поле деятельности, приближавшее к заветному будущему, когда я мог бы посвятить себя целиком работе над осуществлением мечты», - писал В. П. Глушко. В те годы он с увлечением, в подлиннике, прочел труды зарубежных пионеров ракетной техники: Р. Год-дарда, Р. Эно-Пельтри, Г. Оберта.

После завершения учебы в университете В. П. Глуш-ко начал работать в Ленинградской газодинамической лаборатории (ГДЛ). Здесь им разрабатывалась серия жидкостных ракетных двигателей ОРМ - опытных ракетных моторов, исследовались способы химического зажигания, возможности использования разных видов топлива, изучалось влияние степени профилирования сопла на характеристики двигателя, проводились огневые стендовые испытания ЖРД. Эти двигатели были предназначены для ракет вертикального взлета, ускорителей самолетов, морских торпед.

В 1933 г. в Москве на базе ГДЛ и московской Группы по изучению реактивного движения был создан первый в мире Реактивный научно-исследовательский институт (РНИИ). В. П. Глушко переехал в Москву и возглавил в РНИИ отдел по разработке ЖРД. В этот период им были проведены обширные научно-исследовательские работы в области определения эффективности ракетных топлив, расчета профиля сверхзвукового сопла, выбора струйных и центробежных форсунок для качественного распыла жидкого топлива, расчета охлаждения огневой стенки камеры двигателя. Именно в РНИИ началась совместная деятельность С. П. Королева и В. П. Глушко, определившая на многие годы основополагающее направление развития ракетной техники и космонавтики в нашей стране.

У С. П. Королева и В. П. Глушко были обширные творческие планы по созданию перспективных ракетных двигателей, крылатых и баллистических ракет. Однако в тот период их планом не суждено было претвориться в жизнь. По ложному обвинению в 1938 г. они были арестованы и репрессированы.

Находясь в заключении, В. П. Глушко работал сначала на одном из подмосковных авиазаводов, а затем на авиазаводе в Казани. Здесь он возглавил специальное КБ по разработке реактивных ускорителей для самолетов. Под руководством В. П. Глушко в годы Великой Отечественной войны были разработаны, испытаны и переданы в серийное производство ракетные двигательные установки РД-1, РД-1ХЗ, РД-2, которые устанавливались в качестве ускорителей на самолеты Пе-2, Ла-7, Як-3, Су-6.

В 1945 г. В. П. Глушко создал и возглавил в Казанском авиационном институте первую в СССР кафедру ракетных двигателей. В ее состав вошли выдающиеся специалисты-ракетчики: С. П. Королев, Г. С. Жириц-кий, Д. Д. Севрук.

В этом же году В. П. Глушко в составе группы советских специалистов, занимавшихся вопросами ракетной техники, был командирован в Германию для поисков и изучения немецких боевых ракет У-2. Богатый опыт и инженерная интуиция позволили В. П. Глушко быстро разобраться в особенностях конструкции двигателей У-2, их технических характеристиках, условиях производства и эксплуатации.

После возвращения из Германии В. П. Глушко были сформулированы и направлены в Правительство СССР предложения о создании в нашей стране крупной конструкторской организации и опытного завода для проектирования и производства ракетных двигателей. Инициатива В. П. Глушко получила поддержку руководства страны, и в 1946 г. в подмосковном городе Химки на базе бывшего авиационного завода было организовано ОКБ-456, ныне знаменитое Научно-производственное объединение «Энергомаш». В. П. Глушко был его бессменным Главным конструктором с первого дня и до 1974 г.

В послевоенные годы коллективом ОКБ-456 под руководством В. П. Глушко были разработаны двигатели РД-100, РД-101, РД-103М, которые устанавливались на баллистические ракеты Р-1, Р-2, Р-5, Р-5М конструкции С. П. Королева. Во многом эти двигатели по своей конструкции и техническим параметрам еще напоминали двигатели немецкой ракеты У-2. Однако В. П. Глушко понимал, что для дальнейшего улучшения характеристик отечественных ЖРД нужны принципиально новые решения. Необходимо было увеличить давление в камере сгорания, перейти на более эффективное топливо, улучшить условия смесеобразования и распыла топливных компонентов и т. д. В результате напряженных научно-исследовательских и опытно-конструкторских работ удалось разработать новую конструкцию охлаждающего тракта камеры двигателя, создать оригинальную схему расположения форсунок в смесительной головке, значительно уменьшить массово-габаритные параметры камеры ЖРД.

Накопленный научно-технический потенциал позволил ОКБ-456 под руководством В. П. Глушко перейти к созданию ракетных двигателей качественно нового уровня. В 1957 г. прошло первое летное испытание новой отечественной мощной межконтинентальной ракеты Р-7 конструкции С. П. Королева с двигателями РД-107 и РД-108 конструкции В. П. Глушко. На этих двигателях осуществлен запуск первого искусственного спутника Земли, полет первого в мире космонавта Ю. А. Гагарина, запуски автоматических станций для полетов Луну, Венеру, Марс, пилотируемых кораблей и «Восток», «Восход», «Союз».

Созданные более 50 лет назад двигатели РД-107 и РД-108 постоянно совершенствуются и продолжают активно работать в интересах российской и мировой космонавтики. Именно на них осуществляются запуски пилотируемых космических кораблей с космодрома «Байканур».

В период 60-70-х гг. прошлого столетия в ОКБ В. П. Глушко была создана серия ЖРД на высококи-пящих окислителях (азотная кислота, азотный тетрок-сид) с керосином, а затем и с несимметричным диме-

тилгидразином (НДМГ). Это долгохранимые топлива, так как заправленные ими ракеты могут длительное время находиться в боевой готовности. Созданные с использованием таких двигателей ракеты шахтного базирования составили основу оборонного потенциала нашей страны.

Разработка и создание ЖРД на высококипящих окислителях шли в ОКБ особенно успешно и быстро. Так, например, азотнокислотный двигатель РД-214 с тягой 74 тс в пустоте летал с 1957 г., а с 1962 по 1977 гг. использовался на первой ступени ракет-носителей «Космос». На второй ступени этой ракеты использован работающий на кислороде с несимметричным ди-метилгидразином двигатель РД-119 тягой 11 тс в пустоте и с рекордным для схемы без дожигания удельным импульсом 352 с, созданный в 1958-1962 гг. Разработанные в 1958-1961 гг. двигатели РД-218 и РД-219 соответственно тягой 226 и 90 тс на первой и второй ступенях ракеты Р-16 работали на самовоспламеняющемся топливе (азотная кислота с несимметричном диметилгидразином) и обеспечивали удельный импульс соответственно 246 и 293 с.

В 1959-1962 гг. в ОКБ В. П. Глушко для ракеты Р-9 был создан кислородно-керосиновый двигатель РД-111 с четырьмя качающимися камерами. Тяга в пустоте - 166 тс, удельный импульс в пустоте - 317 с, давление в камере - 80 кг/см2 . Привод ТНА - от газогенератора, работающего на основных компонентах с избытком горючего.

В дальнейшем ОКБ В. П. Глушко с целью ликвидации потерь на привод ТНА перешло на создание двигателей с дожиганием генераторного газа. Такая схема была использована на однокамерном двигателе РД-253; топливо - азотный тетроксид (АТ) с несимметричном диметилгидразином. Давление в камере -150 кг/см2, в магистралях - до 400 кг/см2 , тяга в пустоте - 166 тс, удельный импульс - 316 с. Период разработки - 1962-1965 гг. Шесть таких двигателей установлены на первой ступени ракеты-носителя «Протон» и они безотказно работают уже в течение более четырех десятилетий. «Протон» обладает значительно большей грузоподъемностью, чем «Союз» и отличается высокими эксплуатационными и энергетическими характеристиками; им решен ряд важнейших задач, связанных с исследованием Луны, Венеры и Марса, в том числе «Протон» обеспечил программу полета к Луне с взятием грунта и его доставкой на Землю.

Для российской школы создателей жидкостных ракетных двигателей (ЖРД), которую долгие годы возглавлял академик В. П. Глушко, характерно стремление к максимально полному использованию энергии химического топлива и получению максимального удельного импульса.

Мощные ЖРД устанавливаются на первых ступенях ракет-носителей. Тяга таких единичных двигателей составляет 100-800 т. Поскольку двигатели работают с уровня Земли, то, естественно, давление продуктов сгорания на срезе их сопел ограничено: оно не может быть намного меньше атмосферного. В противном случае в сопло входит скачок уплотнения, и тогда возможны отрывы потока и, как следствие, прогары сопел. Это означает, что при выбранной паре

компонентов топлива увеличить удельный импульс можно, только повышая степень расширения продуктов сгорания в сопле. В мощных ЖРД первых ступеней подобное достигается путем увеличения давления в камере сгорания.

Динамику освоения высоких давлений (рис. 1) и получения максимальных удельных импульсов (рис. 2) можно проследить на примере двигателей, разработанных в НПО «Энергомаш» и за рубежом.

Из рисунков видно, что более высокое давление в камерах сгорания российских ЖРД позволяют обеспечить большую степень расширения продуктов сгорания в соплах и, следовательно, повышенные удельные

импульсы тяги двигателей. Такие ЖРД установлены практически на всех российских космических ракетах и на многих ракетах стратегического назначения.

Использование замкнутой схемы и освоение высоких давлений с целью получения максимальных удельных импульсов тяги стало основным направлением в создании российских ЖРД и для мирного космоса, и для стратегических ракет оборонного назначения. Так, на стратегической ракете Р-36М («Сатана») установлен двигатель РД-264 с давлением в камере сгорания 210 кг/см2, а на ракетах-носителях «Зенит» и «Энергия» - двигатели РД-171 и РД-170 с давлением в камере сгорания 250 кг/см2.

Давление в камере сгорания, кгс/см

РД-170(171) ББМЕ

Область "закрытых" схем

РД-120 ЬБ-7 О- "

Область «открытых» схем

Рис. 1. Изменения со временем величины давления в камерах сгорания ЖРД: О - разработки НПО «Энергомаш»; 0 - двигатели зарубежных стран

Удельный импульс тяги на Земле, с

Степень расширения газов в солле

Область «открытых» схем

Орд -120-01 ОРД -253

Область «закрытых» схем

РД -180 -170()171 О

Рис. 2. Зависимость удельного импульса тяги от степени расширения газов в сопле ЖРД: О - разработки НПО «Энергомаш»; # - двигатели зарубежных стран

Все научно-технические достижения и конструкторские решения НПО «Энергомаш», которые были получены при разработке мощных и надежных двига -телей замкнутых схем, стали основой для определения перспективных направлений развития ЖРД на бли-жайшие десятилетия. Главное в том, что на нетоксичных, экологически безопасных, энергетически эффективных и относительно дешевых компонентах топлива освоены и реализованы методы конструирования и доводки высоконадежных агрегатов ЖРД: камер сгорания, газогенераторов и турбонасосных агрегатов.

Использование перечисленных разработок в ряде других двигателей повысило надежность и эффектив -ность всех разработок. Примером может служить двигатель НПО «Энергомаш» РД-180, имеющий тягу 400 т. Он построен на базе универсальной 200-тонной камеры сгорания и двухзонного газогенератора. Проект этого двигателя был представлен на объявленном в 1995 г. корпорацией «Локхид-Мартин» (США) конкурсе по выбору кислородно-керосинового двигателя для модернизации американской ракеты-носителя «Атлас». Российский проект оказался победителем тендера, продемонстрировав преимущество отечественных двигательных технологий.

Двухкамерный двигатель РД-180 (рис. 3) с давлением в камере сгорания 260 кг/см2 был создан в рекордно короткие сроки. Через три года и десять месяцев после заключения контракта на разработку двигателя состоялся первый успешный коммерческий полет ракеты «Атлас III» с российским двигателем РД-180. Во время полета были продемонстрированы высокие энергетические характеристики и, что особенно важно, возможность изменения в широком диапазоне тяги двигателя. Это позволяет оптимизировать и уменьшить нагрузки на элементы конструкции ракеты и спутника на разных участках траектории.

В процессе создания двигатель РД-180 был сертифицирован для использования в ракетах-носителях «Атлас» легкого, среднего и тяжелого классов. Сегодня такого результата можно достичь, применяя только российские технологии. К настоящему времени успешно осуществлено семь запусков американских ракет-носителей «Атлас» легкого и среднего классов с российскими двигателями РД-180.

Новейшей разработкой кислородно-керосинового двигателя является РД-191 НПО «Энергомаш» для перспективной российской ракеты-носителя «Ангара», первая ступень которой строится из универсаль-ных ракетных модулей. Каждый модуль оснащается 200-тонным двигателем, в котором используется одна универсальная камера сгорания - та же, что и в двигателях РД-170 и РД-180. Двигатель РД-191, в который заложены элементы многоразовости, проходит первый этап доводочных испытаний, проверяются новые решения по управлению потоками рабочих тел и вектором тяги, а также возможность уменьшения тяги двигателя до 30 % номинальной.

Таким образом, можно констатировать, что сегодня первые ступени российских ракет-носителей обеспечены на десятилетие вперед семейством мощных кислородно-керосиновых ЖРД, построенных на

базе высоконадежной многоразовой универсальной камеры сгорания. В зависимости от необходимой мощности двигателя в нем используется четыре (РД-170 и РД-171), две (РД-180) или одна (РД-191) камера.

18 1 2 3 4 5 6 7

Ж® ЭНЕРГОМАШ V I

РОССИЯ Л (ч|)

Рис. 3. Двигатель РД-180: 1 - рама; 2 - блок газоводов; 3 - выхлопной коллектор турбины; 4 - турбина; 5 - теплообменник; 6 - насос окислителя; 7 - бус-терный насосный агрегат окислителя; 8 - насос горючего первой ступени; 9 - насос горючего второй ступени; 10, 11 - вторая и первая камеры двигателя; 12 - эжектор; 13 - пусковой бачок;

14 - рулевой привод; 15 - гибкие элементы; 16 - бустерный насосный агрегат горючего; 17 - траверса; 18 - разделительный клапан

Разносторонне талантливый, В. П. Глушко не замыкался только на технической стороне создания двигателей и ракет. Большое внимание он уделял работам по исследованию характеристик ракетных топлив, возглавлял научный совет по жидкому ракетному топ -ливу при Президиуме Академии наук СССР, привлекая к работе широкий круг научных организаций. В результате многолетней работы с 1956 по 1982 гг. было выпущено 40 томов справочных изданий, содержащих богатейшую информацию по свойствам различных веществ. Эти издания широко используются у нас в стране и за рубежом.

Академиком В. П. Глушко было создано принципиально новое научное направление в области фунда -ментальных и прикладных наук. Следуя его примеру многие молодые ученые и инженеры выбрали сферой своей научно-технической и производственной деятельности ракетное двигателестроение. Как о своем пер -вом учителе в ракетной технике говорил о В. П. Глушко выдающийся главный конструктор космических и ракетных двигателей Герой Социалистического труда, лауреат Ленинской и Государственной премий СССР

А. М. Исаев. Эти же слова могут повторить и многие другие двигателисты нашей страны.

Всегда занятый решением научно-производственных вопросов, В. П. Глушко находил время и для общественной работы. Многие годы он избирался депутатом Верховного Совета СССР, добросовестно выполнял свой долг перед избирателями, активно участвовал в решении важнейших государственных и социальных проблем. Однако его имя не было широко известно в нашей стране и за рубежом, так же как не были известны имена других выдающихся создателей оборонной техники. Только после смерти В. П. Глуш-ко в 1989 г. появились первые публикации о его жизни и творческой деятельности.

Выдающиеся заслуги В. П. Глушко были отмечены высокими наградами государства. Он является дважды Героем Социалистического Труда, лауреатом Ленинской и Государственных премий СССР, награжден пятью орденами Ленина, орденом Октябрьской революции, другими орденами и медалями, в том числе Золотой медалью им. К. Э. Циолковского АН СССР. Он был действительным членом Академии наук СССР и Международной академии астронавтики, председателем и членом многих научных советов.

Имя Валентина Петровича Глушко, пионера и выдающегося творца ракетно-космической техники, в августе 1994 г. решением ХХ11-й Генеральной ассамблеи Международного астрономического союза было присвоено кратеру на заповедной видимой стороне Луны в одном ряду с именами величайших исследователей мира - Н. Бора, Г. Галилея, Д. Дальтона, А. Эн-штейна.

4 октября 2001 г. в Москве на Аллее Героев космоса был открыт памятник выдающемуся ученому и конструктору современности, одному из основоположников отечественного ракетостроения академику Валентину Петровичу Глушко. Теперь, в дополнение к небесному мемориалу, на Аллее Героев космоса установлен земной памятник выдающемуся нашему современнику, инженеру и ученому с мировым именем.

Памятник В. П. Глушко стоит в одном ряду с памятниками академикам С. П. Королеву и М. В. Келдышу. Каждый из них внес свой вклад в мировую науку и космическую технику, взаимно дополняя и завершая работу другого. И это подчеркивается групповым ансамблем памятников нашим выдающимся

соотечественникам-ракетостроителям и космонавтам-первопроходцам космических трасс, память о которых сохранится в веках.

Библиографический список

1. Арлазаров, М. С. Дорога на космодром / М. С. Арлазаров. М. : Политиздат, 1980. 152 с.

2. Афанасьев, И. Б. Каждый должен заниматься своим делом / И. Б. Афанасьев, М. Н. Пирогов // Новости космонавтики. 2008. № 3. С. 52-53.

3. Глушко, В. П. Путь в ракетной технике / В. П. Глушко. М. : Машиностроение, 1997. 504 с.

4. Каторгин, Б. И. Открыт памятник В. П. Глушко / Б. И. Каторгин, В. Ф. Рахманин // Общеросс. науч.-техн. журнал «Полет». 2001. № 11. С. 19-21.

5. Каторгин, Б. И. Перспективы создания мощных жидкостных ракетных двигателей / Б. И. Каторгин // Вестник РАН. 2004. Т. 74. № 3. С. 499-506.

6. Космонавтика. Энциклопедия / под ред.

B. П. Глушко. М. : Советская энциклопедия, 1985. 528 с.

7. Максимов, А. И. Основоположники современной космонавтики. С. П. Королев / А. И. Максимов // Теплофизика и аэромеханика. 2006. Т. 13. № 4.

8. Мохов, В. В. «Ангара» выходит на рынок /

B. В. Мохов // Новости космонавтики. 1999. № 9.

9. Семенов, Ю. В. Концепция марситанской экспедиции / Ю. В. Семенов, Л. А. Горшков // Оберосс. на-уч.-техн. журнал «Полет». 2001. № 11. С. 12-18.

10. Фаворский, В. В. Космонавтика и ракетно-космическая промышленность. Кн. 1. Зарождение и становление (1946-1975 гг.) / В. В. Фаворский, И. В. Мещеряков. М. : Машиностроение, 2003. 344 с.

11. Черток, Б. Е. Ракеты и люди / Б. Е. Черток. М. : Машиностроение, 1975. 416 с.

12. Черток, Б. Е. Ракеты и люди. Фили-Подлипки-Тюратам / Б. Е. Черток. М. : Машиностроение, 1996. 446 с.

13. Черток, Б. Е. Ракеты и люди. Горячие дни холодной войны / Б. Е. Черток. М. : Машиностроение, 1997. 536 с.

14. Черток, Б. Е. Ракеты и люди. Лунная гонка / Б. Е. Черток. М. Машиностроение, 1999. 576 с.

M. V. Krayev, V. P. Nazarov THE FOUNDER OF RUSSIAN ROCKET-SPACE ENGINE BUILDING

To the 100-th anniversary of the birth of academic V. P. Glushko

The main events of life and creative activity of the outstanding scientist and rocket-space engines designer academic V. P. Glushko are described. His contribution to the Russian and world astronautic science development is represented. The scientific-technical tendencies in the rocket-space engine building development are analyzed.

Бывает так, что люди, чьи имена заслуживают мировой славы, остаются в тени. Далеко не всем известно, что одним из основателей постройки ракетно-космической техники был Валентин Петрович Глушко. Без его идеи жидкостно-ракетного двигателя не было бы и советской космонавтики.

Валентин Глушко родился в Одессе в 1908 году. Его детство и юность пришлись на тяжелые годы гражданской войны. Но этот мальчик неожиданно увлекся звездами и решил посвятить свою жизнь воплощению идеи полета человека в космос.

В 11 лет Валентин поступил в реальное училище им. Святого Павла, которое вскоре было переименовано в профтехшколу «Металл» им. Троцкого. Одновременно с учёбой в училище руководил Кружком общества любителей мироведения. В эти же годы обучался игре на скрипке в консерватории, а затем был переведен в Одесскую музыкальную академию.

С 1923 по 1930 годы состоял в переписке с К. Э. Циолковским, который высылал юному энтузиасту межпланетных полетов все свои новые работы.

После окончания профтехшколы, по путевке Наркомпроса УССР направляется на учёбу в Ленинградский государственный университет. В качестве дипломной работы, состоящей из трех частей, Глушко предложил проект межпланетного корабля «Гелиоракетоплана» с электрическими ракетными двигателями.

15 мая 1929 года Глушко зачислен в штат Газодинамической лаборатории или сокращенно ГДЛ, в которой работали энтузиасты ракетной техники. Наконец-то он смог по-настоящему взяться за разработку, как тогда говорили, ракетных моторов.

Проблемы и вопросы сыпались, как из рога изобилия. «Перед нами, – писал Глушко много лет спустя, – лежали в полном смысле слова чистые листы бумаги и Неизвестное». Первые пуски продолжались доли секунды: камеры двигателей не выдерживали огромной температуры и прогорали. Однако постепенно время работы опытных ЖРД (жидкостных ракетных двигателей) увеличилось, сначала до секунд, а потом и до минут.

За время работы в ГДЛ были разработаны конструкции и испытаны двигатели серии ОРМ: ОРМ-1–ОРМ-52 на азотнокислотном-керосиновом топливе. Кроме того, разработаны конструкции ракет серии РЛА-1, РЛА-2, РЛА-3 и РЛА-100.

В январе 1934 года Глушко был переведен в Москву и назначен начальником сектора РНИИ Наркомата Обороны.

В марте 1938 года Глушко был арестован и по август 1939 года находился под следствием внутренней тюрьмы НКВД на Лубянке и в Бутырской тюрьме. 15 августа осуждён Особым совещанием при НКВД СССР сроком на 8 лет, впоследствии оставлен для работы в техбюро. До 1940 года он работает в конструкторской группе 4-го Спецотдела НКВД при Тушинском авиамоторном заводе. За это время были разработаны проект вспомогательной установки ЖРД на самолетах С-100 и Сталь -7.

Пройдя круги ада, Валентин Петрович оказался в Казани, в «шарашке». Будучи по-прежнему заключенным, он снова смог заняться ракетными двигателями. Его заместителем по летным испытаниям стал, тоже «зек», Сергей Павлович Королев. Только в июле 1944 года они были «досрочно освобождены со снятием судимости».

Война закончилась. Глушко и Королев возвратились в Москву. Начался новый, великий этап в их жизни. Валентин Петрович возглавил Особое конструкторское бюро. В нем родились мощные маршевые двигатели для ракет «Восток», «Протон», «Энергия».

Выдающегося конструктора не стало в 1988 году. Он оказался участником многих важных событий, внес неоценимый вклад в освоение космоса. «Счастлив тот, - писал Глушко, - кто нашел свое призвание, способное поглотить все его помыслы и стремления. Дважды счастлив, кто нашел призвание еще в отроческие годы. Мне выпало это счастье».