Сравнение паротурбинных и парогазовых установок. Парогазовая установка. Парогазовая установка с циклом одного давления

О статье, в которой подробно и простыми словами описан цикл ПГУ-450. Статья действительно очень легко усваивается. Я же хочу рассказать о теории. Коротко, но по-делу.

Материал я позаимствовал из учебного пособия «Введение в теплоэнергетику» . Авторы этого пособия — И. З. Полещук, Н. М. Цирельман. Пособие предлагается студентам УГАТУ (Уфимский государственный авиационный технический университет) для изучения одноименной дисциплины.

Газотурбинная установка (ГТУ) представляет собой тепловой двигатель, в котором химическая энергия топлива преобразуется сначала в теплоту, а затем в механическую энергию на вращающемся валу.

Простейшая ГТУ состоит из компрессора, в котором сжимается атмосферный воздух, камеры сгорания, где в среде этого воздуха сжигается топливо, и турбины, в которой расширяются продукты сгорания. Так как средняя температура газов при расширении существенно выше, чем воздуха при сжатии, мощность, развиваемая турбиной, оказывается больше мощности, необходимой для вращения компрессора. Их разность представляет собой полезную мощность ГТУ.

На рис. 1 показаны схема, термодинамический цикл и тепловой баланс такой установки. Процесс (цикл) работающей таким образом ГТУ называется разомкнутым или открытым. Рабочее тело (воздух, продукты сгорания) постоянно возобновляется — забирается из атмосферы и сбрасывается в нее. КПД ГТУ, как и любого теплового двигателя, представляет собой отношение полезной мощности N ГТУ к расходу теплоты, полученной при сжигании топлива:

η ГТУ = N ГТУ / Q T.

Из баланса энергии следует, что N ГТУ = Q T — ΣQ П, где ΣQ П — общее количество отведенной из цикла ГТУ теплоты, равное сумме внешних потерь.

Основную часть потерь теплоты ГТУ простого цикла составляют потери с уходящими газами:


ΔQух ≈ Qух — Qв; ΔQух — Qв ≈ 65…80%.

Доля остальных потерь значительно меньше:

а) потери от недожога в камере сгорания ΔQкс / Qт ≤ 3%;

б) потери из-за утечек рабочего тела; ΔQут / Qт ≤ 2%;

в) механические потери (эквивалентная им теплота отводится из цикла с маслом, охлаждающим подшипники) ΔNмех / Qт ≤ 1%;

г) потери в электрическом генераторе ΔNэг / Qт ≤ 1…2%;

д) потери теплоты конвекцией или излучением в окружающую среду ΔQокр / Qт ≤ 3%

Теплота, которая отводится из цикла ГТУ с отработавшими газами, может быть частично использована вне цикла ГТУ, в частности, в паросиловом цикле.

Принципиальные схемы парогазовых установок различных типов приведены на рис. 2.

В общем случае КПД ПГУ:

Здесь — Qгту количество теплоты, подведенной к рабочему телу ГТУ;

Qпсу — количество теплоты, подведенной к паровой среде в котле.

Рис. 1. Принцип действия простейшей ГТУ

а — принципиальная схема: 1 — компрессор; 2 — камера сгорания; 3 — турбина; 4 — электрогенератор;
б — термодинамический цикл ГТУ в ТS-диаграмме;
в — баланс энергии.

В простейшей бинарной парогазовой установке по схеме, показанной на рис. 2 а, весь пар вырабатывается в котле-утилизаторе: η УПГ = 0,6…0,8 (в зависимости, главным образом, от температуры уходящих газов).

При Т Г = 1400…1500 К η ГТУ ≈ 0,35, и тогда КПД бинарной ПГУ может дос-тигать 50-55 %.

Температура отработавших в турбине ГТУ газов высока (400-450оС), следовательно, велики потери теплоты с уходящими газами и КПД газотурбинных электростанций составляет 38 % , т. е. он практически такой же, как КПД современных паротурбинных электростанций.

Газотурбинные установки работают на газовом топливе, которое существенно дешевле мазута. Единичная мощность современных ГТУ достигает 250 МВт, что приближается к мощности паротурбинных установок. К преимуществам ГТУ по сравнению с паротурбинными установками относятся:

  1. незначительная потребность в охлаждающей воде;
  2. меньшая масса и меньшие капитальные затраты на единицу мощности;
  3. возможность быстрого пуска и форсирования нагрузки.

Рис. 2. Принципиальные схемы различных парогазовых установок:

а — ПГУ с парогенератором утилизационного типа;
б — ПГУ со сбросом газов в топку котла (НПГ);
в — ПГУ на парогазовой смеси;
1 — воздух из атмосферы; 2 — топливо; 3 — отработавшие в турбине газы; 4 — уходящие газы; 5 — вода из сети на охлаждение; 6 — отвод охлаждающей воды; 7 — свежий пар; 8 — питательная вода; 9 – промежуточный перегрев пара; 10 — регенеративные отбросы пара; 11 — пар, поступающий после турбины в камеру сгорания.
К — компрессор; Т — турбина; ПТ — паровая турбина;
ГВ, ГН — газоводяные подогреватели высокого и низкого давления;
ПВД, ПНД — регенеративные подогреватели питательной воды высокого и низкого давления; НПГ, УПГ — низконапорный, утилизационный парогенераторы; КС — камера сгорания.

Объединяя паротурбинную и газотурбинную установки общим технологическим циклом, получают парогазовую установку (ПГУ), КПД который существенно выше, чем КПД отдельно взятых паротурбинной и газотурбинной установок.

КПД парогазовой электростанции на 17-20 % больше, чем обычной паротурбинной электростанции. В варианте простейшей ГТУ с утилизацией тепла уходящих газов коэффициент использования тепла топлива достигает 82-85%.

ПГУ Установка, предназначенная для одновременного преобразования энергии двух рабочих тел пара и газа, в механическую энергию. [ГОСТ 26691 85] парогазовая установка Устройство, включающее радиационные и конвективные поверхности нагрева,… …

Парогазовая установка - устройство, включающее радиационные и конвективные поверхности нагрева, генерирующие и перегревающие пар для работы паровой турбины за счет сжигания органического топлива и утилизации теплоты продуктов сгорания, используемых в газовой турбине в… … Официальная терминология

Парогазовая установка - ГТУ 15. Парогазовая установка Установка, предназначенная для одновременного преобразования энергии двух рабочих тел пара и газа, в механическую энергию Источник: ГОСТ 26691 85: Теплоэнергетика. Термины и определения оригинал документа 3.13 парог … Словарь-справочник терминов нормативно-технической документации

парогазовая установка с внутрицикловой газификацией биомассы - (в зависимости от используемой технологии газификации КПД достигает 36 45 %) [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN biomass integrated gasification combined cycle plant … Справочник технического переводчика

парогазовая установка с внутрицикловой газификацией угля - — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN gasification combined cycle plant … Справочник технического переводчика

парогазовая установка с внутрицикловой газификацией угля (ПГУ-ВГУ) - — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN coal gasification power plantintegrated coal gasification combined cycle plant … Справочник технического переводчика

парогазовая установка с внутрицикловой газификацией угля на воздушном дутье - — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN air blown integrated coal gasification combined cycle plant … Справочник технического переводчика

парогазовая установка с внутрицикловой газификацией угля на кислородном дутье - — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN oxygen blown integrated coal gasification combined cycle plant … Справочник технического переводчика

парогазовая установка с дожиганием топлива - — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN combined cycle plant with supplemenary firing … Справочник технического переводчика

парогазовая установка с дополнительным сжиганием топлива - — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN supplementary fired combined cycle plant … Справочник технического переводчика

Парогазовая установка ПГУ является комбинированной установкой, состоящей из ГТУ, котла – утилизатора (КУ) и паровой турбины (ПТ). Реализация парового и газового циклов осуществляется в раздельных контурах, т. е., при отсутствии контакта между продуктами сгорания и парожидкостным рабочим телом. Взаимодействие рабочих тел осуществляется только в форме теплообмена в теплообменных аппаратах поверхностного типа.

Использование парогазовых установок является одним из возможных и перспективных направлений снижения топливно – энергетических затрат.

ПГУ термодинамически удачно объединяют в себе параметры ГТУ и паросиловых установок:

ГТУ работают в зоне повышенных температур рабочего тела;

Паросиловые – приводятся в действие уже отработавшими, уходящими из турбины продуктами сгорания, т.е. выполняют роль утилизаторов и используют бросовую энергию.

КПД установки повышается в результате термодинамической надстройки высокотемпературного газового цикла паровым циклом, что сокращает потери теплоты с уходящими газами в газовой турбине.

Таким образом, ПГУ можно рассматривать как третий этап усовершенствования турбинных агрегатов. ПГУ являются перспективными двигателями, как высокоэкономичные, с малыми капиталовложениями. Отличные качества парогазовых установок определили области их применения. ПГУ широко применяются в энергетике и др. областях ТЭК.

Сдерживает широкое применение таких установок отсутствие единой точки зрения о наиболее рациональных направлениях утилизации тепла ГТУ.

В настоящее время перспективной схемой ПГУ для использования на МГ также является чисто утилизационная схема ПГУ с полной надстройкой цикла, в которой парогенератор обогревается только отходящими газами газовой турбины (рис. 6.1).

По этой схеме продукты сгорания ГТУ после турбины низкого давления (ТНД) поступают в котел-утилизатор (КУ) для выработки пара высокого давления. Получаемый пар из КУ поступает в паровую турбину (ПТ), где расширяясь, совершает полезную работу, идущую на привод электрогенератора или нагнетателя. Отработанный пар после ПТ поступает в конденсатор К, где конденсируется и затем питательным насосом (ПН) снова подается в котел – утилизатор. Термодинамический цикл парогазовой установки приведен на рис. 6.2. Высокотемпературный газовый цикл ГТУ начинается с процесса сжатия воздуха в осевом компрессоре: 1 → 2. В камере сгорания (а также в регенераторе, если он есть) осуществляется подвод теплоты 2 → 3; генерированные продукты сгорания поступают в газовую турбину, где расширяясь, совершают работу, процесс 3 → 4; и наконец, отработавшие газы отдают свое тепло в котле утилизаторе, нагревая воду и пар, 4 → 5. Остаток низкотемпературного тепла остается неиспользованным и передается в окружающую среду, 5 → 1.


Рисунок 6.1 - Принципиальная схема ПГУ с котлом – утилизатором

Рисунок 6.2 - Схема цикла парогазовой установки в координатах Т-S

Парогазовый цикл образован последовательностью процессов: 1" – 2" - 3" – 4"- 5" – 1" (рис. 6.2). Условно цикл начинается процесса 1" – 2" –подвода теплоты в экономайзере. Вода, поступившая из конденсатора, имеет низкую температуру, равную 39 °С (при давлении в конденсаторе Р нп = 0,007 МПа). Нагревается она до температуры кипения, порядка 170…210 °С, при постоянном давлении, соответствующем рабочему давлению котла 0,8…2,0 МПа. 2" – 3" – процесс испарения воды в испарителе и превращения ее в насыщенный пар. 3" – 4" – перегрев пара в перегревателе; 4" – 5" – процесс расширения пара в паровой турбине с совершением работы и потерей температуры; 5" – 1" – пар конденсируется в конденсаторе К, и образовавшаяся вода вновь подается в котел - утилизатор КУ. Цикл замыкается.

Мощность собственно паровой турбины (ПТ) зависит от действительного теплоперепада, или энтальпии, по паровой турбине и расхода пара. Расход пара и параметры пара определяются работой котла-утилизатора. Принципиальная схема котла – утилизатора показана на рис. 6.3.

Котел – утилизатор – это паровой котел с принудительной циркуляцией, не имеющий собственной топки и обогреваемый уходящими газами какой – либо энергетической установки.

Поэтому бросовой теплоты выхлопных газов ГТУ, с температурой порядка 400 °С, вполне достаточно для эффективной работы утилизационных установок.

По ходу котла устанавливаются последовательно теплообменные аппараты: водяной экономайзер "Э", испаритель "И" и пароперегреватель "П".

Водяной экономайзер - это теплообменник, в котором вода подогревается низкотемпературными горячими газами (продуктами сгорания) перед ее подачей в барабан котла (сепаратор).

Генерация пара производится в ходовой части котла следующим образом. Питательная вода, предварительно нагретая в экономайзере до температуры кипения уходящими газами, поступает в барабан котла. Температура горячих газов в хвостовой части котла не должна опускаться ниже 120 °С *.

В режиме генерации пара вода циркулирует через испаритель. В испарителе идет интенсивное поглощение тепла, за счет которого и происходит парообразование. Процесс парообразования в испарителе происходит при температуре кипения питательной воды, соответствующей определенному давлению насыщения.

Сочетание паротурбинной и газотурбинной установок, объединяемых общим технологиче­ским циклом, называют парогазовой установ­кой (ПГУ) электростанции. Соединение этих установок в единое целое позволяет снизить потерю теплоты с уходящими газами ГТУ или парового котла, использовать газы за газовы­ми турбинами в качестве подогретого окисли­теля при сжигании топлива, получить допол­нительную мощность за счет частичного вытеснения регенерации паротурбинных уста­новок и в конечном итоге повысить КПД паро­газовой электростанции по сравнению с паро­турбинной и газотурбинной электростанциями.

Применение ПГУ для сегодняшней энерге­тики - наиболее эффективное средство значи­тельного повышения тепловой и общей эконо­мичности электростанций на органическом топливе. Лучшие из действующих ПГУ имеют КПД до 46%, а проектируемые - до 48-49%, т. е. выше, чем на проектируемых МГД-установках.

Среди различных вариантов ПГУ наи­большее распространение получили следую­щие схемы: ПГУ с высоконапорным парогене­ратором (ВПГ), ПГУ со сбросом газов газо­вой турбины в топку парового котла, ПГУ с утилизационным паровым котлом (УПК), полузависимые ПГУ, ПГУ с внутри цикловой газификацией твердого топлива.

Разработанные в НПО ЦКТИ ПГУ с вы­соконапорным парогенератором работают на природном газе или на жидком газотурбин­ном топливе (рис. 9.8). Воздушный компрес­сор подает сжатый воздух в кольцевой зазор корпуса ВПГ и в дополнительную камеру сгорания ДКС, где его температура повыша­ется. Горячие газы после сжигания топлива в топочной камере имеют давление 0,6- 1,2 МПа в зависимости от давления воздуха за компрессором и используются для генера­ции пара и его перегрева. После промежуточ­ного перегревателя - последней поверхности нагрева ВПГ - газы с температурой пример­но 700 °С поступают в дополнительную каме­ру сгорания, где догреваются до 900 °С и по­ступают в газовую турбину. Отработавшие в газовой турбине газы направляются в трех­ступенчатый газоводяной экономайзер, где они охлаждаются питательной водой и основ­ным конденсатом паровой турбины. Такое подключение экономайзеров обеспечивает по­стоянную температуру уходящих газов 120- 140 °С перед их выходом в дымовую трубу. Вместе с тем в такой ПГУ происходит час­тичное вытеснение регенерации и увеличение мощности паротурбинной установки.


Рис. 9.8. Принципиальная тепловая схема парогазовой установки ПГУ-250 с высоконапорным парогенера­тором ВПГ-600-140:

БС - барабан-сепаратор; ПЕ - пароперегреватель; ПП - промежуточный перегреватель; И - испарительные поверхности нагре­ва; ЦН- циркуляционный насос; ЭК1 - ЭКШ - газоводяные экономайзеры утилизации теплоты уходящих газов ГТУ; ДПВ - деаэратор питательной воды; ДКС - дополнительная камера сгорания

Высоконапорный парогенератор является общей камерой сгорания топлива для паро­турбинной и для газотурбинной установки. Особенностью такой ПГУ является и то, что избыточное давление газов в схеме позволяет не устанавливать дымососы, а воздушный компрессор заменяет дутьевой вентилятор; от­падает необходимость в воздухоподогревателе. Пар из ВПГ направляется в паротурбинную установку, имеющую обычную тепловую схему.

Существенным преимуществом данной ус­тановки является уменьшение габаритов и массовых показателей ВПГ, работающего придавлении в газовом тракте 0,6-1,2 МПа. Высоконапорный парогенератор целиком из­готавливается в заводских условиях. В соот­ветствии с требованиями транспортировки паропроизводительность одного корпуса ВПГне превышает 350-10 3 кг/ч. Парогенератор ВПГ-650-140-545/545 ПО ТКЗ, например, состоит из двух корпусов. Его газоходы экра­нированы сварными газоплотными панелямииз оребренных труб.

ПГУ с ВПГ целесообразно применять при умеренных температурах газов перед ГТУ. С увеличением этой температуры уменьшается доля теплоты, передаваемой газами поверх­ности нагрева высоконапорного парогенера­тора.

Автономная работа паровой ступени ПГУ с ВПГ невозможна, что является недостатком этой схемы, требующей равной надежности газотурбинной установки, паровой турбины, парогенератора. Применение ГТУ со встроен­ными камерами сгорания (например, ГТЭ-150) также недопустимо.

Использование ПГУ с ВПГ перспективно в схемах с внутрицикловой газификацией угля.

На рис. 9.9 показана компоновка ПГУ-200-250 с турбинами К-160-130 и ГТ-35-770 или К-210-130 и ГТ-45-3. Аналогич­ная установка ряд лет успешно работает на Невинномысской ГРЭС. Применение таких ПГУ способно обеспечивать экономию топли­ва на ТЭС на 15%, снижение удельных капи­таловложений на 12-20%, снижение метал­лоемкости оборудования на 30% по сравне­нию с паротурбинной ГРЭС.

ПГУ со сбросом газов газовой турбины в топку парового котла характеризуются тем, что уходящие газы газовой турбины являются высокоподогретым (450-550°С) забалласти­рованным окислителем с содержанием кисло­рода 14-16%. По этой причине их целесооб­разно использовать для сжигания основной массы топлива в паровом котле (рис. 9.10). ПГУ по такой схеме реализована и успешно работает на Молдавской ГРЭС (станционные энергоблоки № 11 и 12). Для ПГУ использовано серийное оборудование: паровая турбина К-210-130 ПОТ ЛМЗ на параметры пара 13 МПа, 540/540 °С, газовая турбина ГТ-35-770 ПОАТ ХТЗ, электрогенераторы па­ровой и газовой ступеней ТГВ-200 и ТВФ-63-243, однокорпусный паровой котел с естественной циркуляцией типа ТМЕ-213 производительностью 670*10 3 кг/ч. Котел поставляется без воздухоподогревателя и мо­жет работать как «под наддувом», так и с уравновешенной тягой. Для этого в схеме предусмотрены дымососы ДС. Данная схема ПГУ позволяет работать в трех различных режимах: режим ПГУ и режимы автономной работы газовой и паровой ступеней.



Рис. 9.9. Компоновка главного корпуса ПГУ-250 с высоконапорным парогенератором:

а - поперечный разрез; б - план; обозначения см. на рис. 9.8

Основным является режим работы уста­новки по парогазовому циклу. Уходящие газы газовой турбины (в ее камере сгорания сжи­гается жидкое газотурбинное топливо) пода­ются в основные горелки котла. В горелки по­ступает и подогретый в калорифере недостаю­щий для процесса горения воздух, нагнетае­мый вентилятором дополнительного воздуха ВДВ. Уходящие газы парового котла охлаж­даются в экономайзерах высокого и низкого давления и затем направляются в дымовую трубу. Через экономайзер высокого давления ЭКВД как в режиме ПГУ, так и при авто­номной работе паровой ступени подается при­мерно 50% питательной воды после питатель­ных насосов. Затем вся питательная вода поступает в основной экономайзер котла с температурой 250°С. В экономайзер низкого давления ЭКНД поступает основной конденсат турбины после ПНД5 (при нагрузках больше 50%) либо после ПНД4 (при нагруз­ках ниже 50%). В связи с этим регенератив­ные отборы паровой турбины частично раз­гружены, а давление пара в ее проточной части несколько возрастает; увеличен пропуск пара в конденсатор турбины.


Рис. 9.9. Продолжение

При автономной работе паровой ступени воздух, необходимый для сжигания топлива в котле, подается дутьевым вентилятором ДВ в калориферы, где подогревается до 180 °С и затем направляется в горелки. Паровой котел работает под разрежением, создаваемым ды­мососами ДС. При автономной работе газо­вой ступени уходящие газы направляются в дымовую трубу.

Возможность работы ПГУ в различных режимах обеспечена установкой автоматиче­ски управляемой системы быстрозапорных газовоздушных шиберов (заслонок) большого диаметра, монтируемых на газовоздуховодах для отключения того или иного элемента ус­тановки. Это удорожает схему и снижает ее надежность.

С повышением температуры газов перед газовой турбиной ПГУ и при более низкой степени сжатия воздуха в компрессоре со­держание кислорода в уходящих газах газо­вой турбины уменьшается, что требует подачи дополнительного количества воздуха. Это при­водит к увеличению объема газов, проходя­щих через конвективные поверхности нагрева парового котла, а также потерь теплоты с уходящими газами . Возрастает и расход электроэнергии на привод дутьевого вентиля­тора. При сжигании в котле твердого топлива подогретый воздух используется в системе пылеприготовления.

Опыт эксплуатации ПГУ-250 на Молдав­ской ГРЭС показал, что ее экономичность в значительной степени зависит от нагрузки паровой и газовой ступеней. Удельный расход условного топлива при номинальной нагруз­ке 240-250 МВт достигает 315 г/(кВт-ч).

Парогазовые электростанции подобного типа широко распространены за рубежом (США, Англия, ФРГ и др.). Преимущество ПГУ этого типа заключается в том, что ис­пользуется паровой котел обычной конструк­ции, в котором возможно применение любого вида топлива, в том числе твердого. В камере сгорания ГТУ сжигают не более 15-20% необходимого для всей ПГУ топлива, что уменьшает потребление его дефицитных сортов. Пуск такой ПГУ обычно начинают с пуска ГТУ, использование теплоты уходя­щих газов которой позволяет поднять в паро­вом котле параметры пара и сократить коли­чество топлива, расходуемого на пуск паро­турбинного оборудования.



Рис. 9.10. Принципиальная тепловая схема ПГУ-250 со сбросом газов ГТУ в топку парового котла:

ПЕ- пароперегреватель свежего пара; ПП-промежуточный пароперегреватель; ЭК, ЭКВД, ЭКНД - экономайзеры: основной, вы­сокого и низкого давления; П1 П7 - подогреватели системы регенерации паровой ступени; ДПВ - деаэратор питательной во­ды; ПЭН, КН, ДН - питательный, конденсатный, дренажный насосы; НР - насос рециркуляции основного конденсата в ЭКНД; ДВ, ВДВ - вентиляторы дутьевой и дополнительного воздуха; КЛ1,КЛ11 - калориферы первой и второй ступеней; В - впрыскпитательной воды из промежуточной ступени ПЭН; ДС - дымосос

ПГУ с утилизационными паровыми котла­ми позволяют использовать уходящие газы газовых турбин для генерации пара. На та­ких установках возможна реализация чисто бинарного цикла без дополнительного сжига­ния топлива с получением пара низких пара­метров. На рис. 9.11 приведена предложен­ная МЭИ схема такой ПГУ, в которой ис­пользуются газовая турбина ГТЭ-150-1100 и турбина насыщенного пара К-70-29, применяе­мая на АЭС. Параметры пара перед турби­ной 3 МПа, 230 °С. По условию допустимых температурных перепадов между газами и паром и наиболее полного использования теп­лоты уходящих газов промежуточный паро­перегреватель выполнен газопаровым и размещен за экономайзером по ходу газов. Часть дымовых газов за газовой турбиной вводится в рассечку между испарительной и экономайзерной поверхностями нагрева утилизацион­ного парового котла УПК, что обеспечивает нужный температурный напор. Для таких ус­тановок характерны высокие значения энерге­тического коэффициента ПГУ и использование только вы­сококачественного органического топлива, главным образом природного газа. При тем­пературе наружного воздуха +15°С и темпе­ратуре уходящих газов 160 °С суммарная электрическая мощность ПГУ составляет при­близительно 220 МВт, КПД равен 44,7%, а, удельный расход условного топлива 281 г/(кВт-ч).

Рис. 9.11. Принципиальная тепловая схема ПГУ-220 с котлом-утилизатором и турбиной на насыщенном паре без дожигания топлива:

УПК - утилизационный котел (парогенератор); С - сепаратор влаги; ДН - дренажный насос; остальные обозначения см. на рис. 20.8, 20.10

Всесоюзным теплотехническим институтом и АТЭП разработан вариант маневренной ПГУ без дожигания топлива перед утилиза­ционным паровым котлом. В состав ПГУ включены одна газовая турбина ГТЭ-150-1100, одноцилиндровая паровая турбина мощностью 75 МВт на параметры пара 3,5 МПа, 465 °С при расходе пара 280-10 3 кг/ч, утилизацион­ный паровой котел с поверхностью нагрева 40-10 3 м 2 из оребренных труб. Модуль глав­ного корпуса электростанции такой ПГУ-250 запроектирован однопролетным с шириной пролета 24 м. Газотурбинная установка, па­ровая турбина и электрический генератор между ними смонтированы в виде одновального агрегата. При температуре наружного воз­духа +5 °С ПГУ-250 имеет удельный расход условного топлива 279 г/(кВт-ч).

Применение в схеме ПГУ с котлами-ути­лизаторами более мощных серийных паротур­бинных установок потребует большего расхо­да пара высоких параметров. Это возможно при повышении температуры газов на входе в котел до 800-850 °С за счет дополнитель­ного сжигания до 25% общего расхода топ­лива (природного газа) в горелочных уст­ройствах котла. На рис. 20.12 приведена принципиальная тепловая схема ПГУ-800 та­кого типа по проекту ВТИ и АТЭП. В ее со­став включены две газотурбинные установки ГТЭ-150-1100 ПОТ ЛМЗ, двухкорпусный ути­лизационный паровой котел ЗиО на суммар­ную паропроизводительность 1150-10 3 кг/ч и параметры пара 13,5 МПа, 545/545 °С, паро­вая турбина К-500-166 ПОТ ЛМЗ. Данная схема имеет ряд особенностей. Регенератив­ные отборы турбины (кроме последнего) за­глушены; в системе регенерации имеется только смешивающий ПНД. Применена без-деаэраторная схема с деаэрацией конденсата турбины в конденсаторе и в смешивающем подогревателе. Конденсат с температурой 60 °С подается двумя питательными насосами ПЭ-720-220 в экономайзер котла. Отсутствие регенеративных отборов пара повышает его пропуск в конденсатор турбины, электриче­ская мощность которой ограничена в связи с этим до 450 МВт.

Утилизационный паровой котел П-образной компоновки прямоточного типа состоит целиком из конвективных поверхностей на­грева. В каждый из корпусов УПК после ГТУ поступают уходящие газы в количестве 680 кг/с с температурой 430-520 °С и содержанием кислорода 14-15,5%. В основных горелках УПК сжигается природный газ. а температура газов перед поверхностями на­грева котла повышается до 840-850 °С. Про­дукты сгорания последовательно охлаждай­ся в пароперегревателях (промежуточном и основном), в испарительных и экономайзерных поверхностях нагрева и при температуре ~125°С направляются в дымовую трубу. Специфической особенностью котла являет­ся его работа при значительном массовом расходе газов. Отношение его паропроизводительности к расходу продуктов сгорания в 5-6 раз ниже, чем у обычных паровых кот­лов энергоблоков. В результате этого мини­мальный температурный напор перемещается из зоны промежуточного пароперегревателя (для прямоточного газомазутного котла) на горячий конец экономайзера. Небольшое зна­чение этого температурного напора (20- 40 °С) заставило конструкторов УПК выпол­нить экономайзер из оребренных труб диа­метром 42X4 мм, что снизило его массу, но повысило аэродинамическое сопротивление котла. Вследствие этого несколько уменьши­лась электрическая мощность газотурбинной установки и всей ПГУ.

Основным режимом ПГУ-800 является ее работа по парогазовому циклу, при этом ути­лизационный паровой котел работает под над­дувом. Преимущество таких ПГУ-возмож­ность режимов автономной работы газовой и паровой ступеней. Самостоятельная работа ПГУ происходит при несколько пониженной мощности в связи с повышенным сопротивле­нием выхлопа, осуществляемого транзитом газов через котел-утилизатор. Для обеспече­ния автономной работы паротурбинного блока необходимо некоторое усложнение схемы, в которую дополнительно должны быть вклю­чены шиберы и дымососы. При таком режиме работы закрывают шиберы 1 и 2 (рис. 9.12) и открывают шиберы 3 -5. Основное количе­ство уходящих газов котла (около 70%) обо­гащают воздухом и при помощи дымососа рециркуляции ДР с температурой 80 °С на­правляют к дополнительным горелкам перед котлом. При этом количество сжигаемого в УПК топлива возрастает втрое. Неисполь­зованное количество уходящих газов котла (около 30%) дымососом ДС сбрасывают в ды­мовую трубу.

Для работы ПГУ на резервном жидком газотурбинном топливе необходимо предус­мотреть в тепловой схеме дополнительный подогрев воды до 130-140°С во избежание коррозии хвостовых поверхностей нагрева. Такой режим работы окажется поэтому менее экономичным.

ПГУ с утилизационными паровыми котла­ми обладают высокой маневренностью. Они рассчитаны примерно на 160 пусков в год; время пуска после простоя 6-8 ч равно 60 мин, а после останова на 40-48 ч - 120 мин. При разгружении ПГУ в первую очередь уменьшают нагрузку газотурбинных агрегатов со 100 до 80% прикрытием входных направляющих аппаратов (ВНА) компрессо­ров. Дальнейшее понижение нагрузки произ­водят уменьшением расхода топлива, сжигае­мого в горелках УПК, снижением паропроизводительности последнего с сохранением тем­пературы газов перед газовыми турбинами. При достижении 50% номинальной нагрузки ПГУ одна из ГТУ и соответствующий ей кор­пус УПК отключаются. С понижением нагруз­ки паровой ступени и паропроизводительности УПК происходит перераспределение темпера­тур по тракту, а температура уходящих газов увеличивается до 170-190°С (при 50% на­грузке котла). Это повышение температуры недопустимо по условиям работы дымососов и дымовой трубы. Для поддержания допу­стимой температуры уходящих газов утилиза­ционный паровой котел при пониженных на­грузках переводится с прямоточного в сепара­торный режим работы со сбросом избыточной теплоты в конденсатор паровой турбины. В схеме паротурбинной установки предусмот­рены встроенный сепаратор и растопочный расширитель. Переход на сепараторный ре­жим повышает расход топлива на ПГУ по сравнению с прямоточным режимом работы на 5-10%.

ПГУ с утилизационными паровыми котла­ми целесообразно устанавливать в газоносных районах Западной Сибири, Средней Азии и др. По данным ВТИ ПГУ-800 обладает высо­кими энергетическими показателями. При температуре наружного воздуха +5°С, тем­пературе газов перед газовыми турбинами 1100°С мощность ПГУ составит примерно 766 МВт, а удельный расход условного топли­ва (нетто) - 266 г/(кВт-ч). С изменением температуры воздуха в пределах от +40 до -40 °С мощность ПГУ изменяется в диапазо­не 550-850 МВт вследствие значительного изменения мощности двух ГТУ. Экономия от внедрения ПГУ-800 вместо обычного энерго­блока 800 МВт составит в год 5,7-10 6 руб. (204-10 6 кг условного топлива).

Рис. 9.12. Принципиальная тепловая схема ПГУ-800 с котлом-утилизатором и с дожиганием топлива:

1-5 - переключаемые газоплотные шиберы; ДС - дымосос; ДР - дымосос рециркуляции газов; С - сепаратор влаги; РР - растопочный расширитель; СПИД - смешивающий подогрева­тель низкого давления

Вариант компоновки главного корпуса ПГУ-800 по проекту ВТИ и АТЭП приведен на рис. 9.13. Расчетные капиталовложения в главный корпус ПГУ составляют 89 руб/кВт. Его сооружение позволит сэко­номить на КЭС с шестью блоками ПГУ-800 по сравнению с установкой шести газомазут­ных энергоблоков 800 МВт до 9-10 6 кг стали и до 8-10 6 кг железобетона.

Сочетание газотурбинных и паротурбин­ных установок с использованием типового серийного оборудования осуществляется в полузависимой парогазовой установке (рис. 9.14). Она предназначается для исполь­зования при прохождении пиков графика электрической нагрузки и предполагает пол­ное или частичное отключение подогревателей высокого давления по пару. В результате его пропуск через проточную часть паровой тур­бины повышается и реализуется прирост мощ­ности паровой ступени примерно 10-11%. Понижение температуры питательной воды компенсируется ее дополнительным подогре­вом в газоводяном экономайзере уходящими газами газовой турбины. Температура уходя­щих газов ГТУ снижается при этом примерно до 190 °С. Суммарный прирост пиковой мощности с учетом работы ГТУ составляет 35- 45% базовой мощности паротурбинного блока. Удельный расход условного топлива близок к расходу при автономной работе этого блока.



Рис. 9.13. Вариант компоновки главного корпуса парогазовой установки ПГУ-800:

1-газовая турбина ГТЭ-150-1100; 2 - электрический генератор ГТУ; 3-забор воздуха в компрессор ГТУ; 4 – утилизационный паровой котел; 5 -паровая турбина К-500-166; 6- дымосос; 7 - дутьевой вентилятор; 8 -газоход

Рис. 9.14. Принципиальная тепловая схема полузави­симой парогазовой установки:

ГВЭ - газоводяной экономайзер; ПК - паровой котел; осталь­ные обозначения см. на рис. 9.8.

Полузависимые ПГУ целесообразно устанавливать в европейской части СССР. По данным ЛМЗ рекомендуются следующие со­четания паровых и газовых турбин: 1 X К-300-240+1 Х ГТЭ-150-1100; 1 Х К-500-130+ 1 Х ГТЭ-150-1100; 1 X К-1200-240 + 2 X ГТЭ-150-1100 и др. Увеличение расчетных капитальных вложений в газотурбинную ус­тановку составит около 20%, а экономия ус­ловного топлива в энергосистеме при эксплуа­тации ПГУ в пиковом режиме- (0,5-1,0) X Х10 6 кг/год. Для получения пиковой мощности перспективно использование в схе­ме полузависимых ПГУ также теплофикаци­онных установок.

Рассмотренные схемы ПГУ предполагают частичное или полное использование высоко­качественного органического топлива (при­родного газа или жидкого газотурбинного топлива), что тормозит их широкое внедре­ние. Значительный интерес представляют раз­работанные ЦКТИ различные схемы парога­зовых установок с высоконапорными пароге­нераторами и внутрицикловой газификацией твердого топлива (рис. 20.15), позволяющие перевести парогазовые установки целиком на уголь.


Рис. 9.15. Принципиальная тепловая схема ПГУ с ВПГ и внутрицикловой газификацией угля:

/- сушка топлива; 2 - газогенератор; 3 - высоконапорный парогенератор (ВПГ); 4 - барабан-сепаратор; 5 - дополнительная ка­мера сгорания ВПГ; 6- циркуляционный насос ВПГ; 7-экономайзер утилизации теплоты уходящих газов газовой турбины; 8-ды­мовая труба; 9- скруббер; 10- подогреватель генераторного газа; ДК -дожимающий компрессор; ПТ - паровая приводная турби­на; РГТ- расширительная газовая турбина; /- свежий пар; // - пар промперегрева; /// - сжатый воздух после компрессора; IV - очищенный генераторный газ; V - зола; VI-IX - питательная вода и конденсат турбины

Предварительно измельченный уголь (дробленка угля 3-10 мм) подается для под­сушки в сушилку и через окислитель (для предотвращения шлакования) в газогенера­тор. Один из вариантов схемы - газификация угля в газогенераторе с «кипящим» слоем на паровоздушном дутье. Газификация топлива обеспечивается подачей в газогенератор воз­духа после дожимающего компрессора и пара из «холодной» нитки промежуточного пере­грева. Воздух для газификации в количестве примерно 3,2 кг на 1 кг кузнецкого угля по­следовательно сжимается в основном и дожи­мающем компрессорах (давление повышается на 10%) и после смешения с паром поступает в газогенератор. Газификация угля происхо­дит при температуре, близкой к 1000 °С.

Генераторный газ охлаждается, отдавая свою теплоту рабочему телу паротурбинной части, затем очищается от механических при­месей и серосодержащих соединений и после расширения в расширительной газовой тур­бине (для уменьшения потребления пара при- водной турбиной дожимающего компрессора) поступает в высоконапорный парогенератор и его дополнительную камеру сгорания для сжигания. Остальная часть тепловой схемы совпадает со схемой обычной ПГУ с ВПГ.

ВНИПИэнергопромом совместно с НПО ЦКТИ разработан проект теплофикационного парогазового энергоблока мощностью 225 МВт с внутрицикловой газификацией угля. Для этой цели использовано типовое энергетиче­ское оборудование: двухкорпусный высокона­порный парогенератор ВПГ-650-140 ТКЗ, га­зотурбинный агрегат ГТЭ-45-2 ХТЗ, теплофи­кационная паровая турбина Т-180-130 ЛМЗ, а также два газогенератора с паровоздушным дутьем ГГПВ-100-2 производительностью по 100 т/ч кузнецкого угля. Технико-экономиче­ские расчеты показали, что по сравнению с обычным паротурбинным теплофикационным блоком 180 МВт применение парогазового энергоблока позволяет увеличить удельную выработку электроэнергии на тепловом по­треблении в 1,5 раза, обеспечить экономию топлива до 8%, значительно снизить вредные выбросы в атмосферу, получить суммарный годовой экономический эффект в 2,6-10 6 руб. Рассмотренный парогазовый энергоблок будет использован при создании более мощ­ных ПГУ-1000 на углях Кузнецкого, Экибастузского и Канско-Ачинского бассейнов.

Парогазовые установки получили доста­точно широкое применение в США, ФРГ, Япо­нии, Франции и др. В ПГУ в основном сжи­гается природный газ и жидкое топливо раз­личных видов. Внедрению ПГУ способствова­ло появление мощных ГТУ (70-100 МВт) с начальной температурой газов 900-1100°С. Это позволило применить ПГУ с утилизаци­онными паровыми котлами (рис. 9.16) бара­банного типа с принудительной циркуляцией среды и давлением пара 4-9 МПа в зависи­мости от того, производится в них дополни­тельное сжигание топлива или нет. На рис. 9.17 дана схема утилизационного паро­вого котла для ПГУ с газовой турбиной МW701. Котел выполнен для двух давлений пара. Он имеет поверхности нагрева из оребренных труб низкого и высокого давления со своими барабанами в блоке с деаэратором питательной воды.

Подходят к концу работы по модернизации на территории Кировской ТЭЦ-3 с применением ПГУ (парогазовой установки). Станция обеспечивает тепловой энергией (отопление и горячая вода) город Кирово-Чепецк и электроэнергией потребителей Кировской области. Электростанция начала свою работу в 1942 году и до ввода в эксплуатацию нового энергетического оборудования установленная электрическая мощность станции составляла 160 МВт, а тепловая - 813 Гкал/ч. На энергетических котлах станции сжигаются - природный газ, мазут, кузнецкий уголь. Применение ПГУ позволит увеличить электрическую и тепловую мощность станции более чем в два раза - до 390 МВт.

Строительство ПГУ 230 МВт на Кировской ТЭЦ-3 началось 29 февраля 2012 года. Энергетиками КЭС-Холдинга за короткое время была проделана огромная работа и уже на лето 2014 года намечено проведение торжественного пуска.

Электрическая мощность парогазовой установки - 230 МВт, тепловая - 136 Гкал/ч. Вводимая парогазовая установка - самое экономичное и экологичное генерирующие оборудование в Кировской области. Отличительная особенность станции - использование первой в регионе градирни вентиляторного типа. Стоимость проекта составила 10,3 млрд.руб.

На сегодняшний день применение парогазовой технологии - оптимальное решение для традиционной тепловой энергетики. Блоки этого типа имеют оптимальные параметры по стоимости единицы установленной мощности и экономической эффективности. За счет повторного использования энергии сгорания газа, их КПД существенно выше традиционных паросиловых блоков. Так, суммарная мощность построенного блока равна 230 мегаваттам. Вся старая часть Кировской ТЭЦ-3 имеет максимальную мощность 149 мегаватт. При этом КПД ПГУ - 52% против 30% на старом блоке. Еще одна особенность ПГУ - это низкий уровень выбросов вредных веществ в атмосферу. Наконец, парогазовый блок имеет существенно меньший строительный цикл в сравнении с традиционными паросиловыми блоками.

Дорога на ПГУ проходит мимо открытого распределительного устройства. Вот где весь Чепецкий асфальт!

Картина маслом "2,5 трубы на ТЭЦ-3".

Труба выведена из эксплуатации и находится в процессе демонтажа.

Новое распределительное устройство.

Новенькие трансформаторы отделены друг от друга огнезащитными перегородками.

Оборудование ОРУ (выключатели, трансформаторы тока и напряжения, разъединители).

Фото с крыши здания РЩУ (Релейный Щит Управления).

Эстакада токопроводов в районе открытой установки трансформаторов.

Новое и старое.

Корпус ТЭЦ-3 - из кирпича, все последующие ТЭЦ построены с применением бетона и ЖБИ.

Теперь пройдемся по этапам получения энергии.

Топливо для ПГУ (газ) подается сначала на пункт подготовки газа, а потом по эстакаде попадает в турбину.

Сверху к газовой турбине подводится очищенный воздух от комплексного очистительного устройства. При этом требования к чистоте воздуха такие, что внутрь воздуховода персонал может войти только в халатах и без обуви. Этот воздух после специальной обработки намного чище того которым мы дышим.

Конструкция внутри здания по размерам сопоставима с двумя грузовыми Ж/Д-вагонами.

Идут работы по монтажу коммуникаций.

Принцип работы этой турбины аналогичен работе двигателя авиалайнера. Воздух очищается, сжимается в компрессоре, затем к нему подводится природный газ. Газы, образующиеся при его сжигании, вращают турбину, а она, в свою очередь, генератор.

Чтобы снизить вибрацию, турбину установили на специальные пружины.

Полученное электричество по токопроводам поступает на трансорматоры.

Далее, продукты сгорания попадают в котел утилизатор. Он также изготовлен отечественной фирмой ОАО «ЭМАльянс». Этот уникальный котлоагрегат спроектирован специально для этого объекта и не имеет аналогов. Его высота составляет 30 метров, он имеет два контура, в которых вырабатывается пар низкого и высокого давления.

Коммуникации наверху.

Труба дымоудаления.

Пар из котла утилизатора вращает паровую турбину Т-63 с генератором мощностью 80 мегаватт. Она изготовлена на Урале специально для этого проекта и предназначена для работы только в составе парогазового блока. В эту турбину вложены последние передовые разработки отечественного турбостроения.

Установкой на фундамент статора турбогенератора (самого тяжелого элемента паровой турбины весом 105 тонн) занимались голландские специалисты фирмы «ALE Heavylift LLC». Они смонтировали специальную такелажную систему и с помощью особых домкратов и сверхпрочных тросов статор в течение нескольких часов поднимали на высоту 20 метров и устанавливали на фундаменте.

Для обслуживания всего оборудования собран мостовой кран.

Баки запаса конденсата.

Главный щит управления.

В помещении сборок задвижек также начали установку оборудования и раскладку кабелей АСУ ТП котельного отделения. Выполнены работы по монтажу конструкций под кабели, идет монтаж кабельных коробов, продолжается прокладка силовых кабелей, подключение оборудования.