Парогазовая установка состоит из. Принципиальная схема парогазовых установок. Реконструкция электростанций – это проще и дешевле

К теплоэлектроцентралям (ТЭЦ) относятся электростанции, которые вырабатывают и отпускают потребителям не только электрическую, но и тепловую энергию. При этом в качестве теплоносителей служат пар из промежуточных отборов турбины, частично уже использованный в первых ступенях расширения турбины для выработки электроэнергии, а также горячая вода с температурой 100-150° С, нагреваемая отбираемым из турбины паром. Пар из парового котла поступает по паропроводу в турбину где он расширяется до давления в конденсаторе и потенциальная энергия его преобразуется в механическую работу вращения ротора турбины и соединенного с ним ротора генератора. Часть пара после нескольких ступеней расширения отбирается из турбины и направляется по паропроводу потребителю пара. Место отбора пара, а значит, и его параметры устанавливаются с учетом требований потребителя. Так как теплота на ТЭЦ расходуется на производство электрической и тепловой энергии, то различаются КПД ТЭЦ по производству и отпуску электроэнергии и производству и отпуску теплоэнергии.

Газотурбинные установки (ГТУ) состоят из трех основных элементов: воздушного компрессора, камеры сгорания и газовой турбины. Воздух из атмосферы поступает в компрессор, приводимый в действие пусковым двигателем, и сжимается. Далее под давлением его подают в камеру сгорания, куда одновременно подводится топливным насосом жидкое или газообразное топливо. Для того чтобы снизить температуру газа до приемлемого уровня (750-770° С), в камеру сгорания подают в 3,5-4,5 раза больше воздуха, чем нужно для сгорания топлива. В камере сгорания он разделяется на два потока: один поток поступает внутрь жаровой трубы и обеспечивает полное сгорание топлива, а второй обтекает жаровую трубу снаружи и, подмешиваясь к продуктам сгорания, снижает их температуру. После камеры сгорания газы поступают в газовую турбину, находящуюся на одном валу с компрессором и генератором. Там они, расширяясь (примерно до атмосферного давления), совершают работу, вращая вал турбины, и затем выбрасываются через дымовую трубу. Мощность газовой турбины значительно меньше мощности паровой турбины и в настоящее время КПД около 30%.

Парогазовые установки (ПГУ) представляют собой сочетание паротурбинной (ПТУ) и газотурбинной (ГТУ) установок. Такое объединение позволяет снизить потери отработавшей теплоты газовых турбин или теплоты уходящих газов паровых котлов, что обеспечивает повышение КПД по сравнению с отдельно взятыми ПТУ и ГТУ. Кроме того, при таком объединении достигается ряд конструктивных преимуществ, приводящих к удешевлению установки. Распространение получили два типа ПГУ: с высоконапорными котлами и со сбросом отработавших газов турбины в топочную камеру обычного котла. Высоконапорный котел работает на газовом или очищенном жидком топливе. Дымовые газы, выходящие из котла с высокой температурой и избыточным давлением, направляются в газовую турбину, на одном валу с которой находятся компрессор и генератор. Компрессор нагнетает воздух в топочную камеру котла. Пар из высоконапорного котла направляется к конденсационной турбине, на одном валу с которой находится генератор. Отработавший в турбине пар переходит в конденсатор и после конденсации насосом подается снова в котел. Выхлопные газы турбины подводятся к экономайзеру для подогрева питательной воды котла. В такой схеме не требуется дымосос для удаления отходящих газов высоконапорного котла, функцию дутьевого насоса выполняет компрессор. КПД установки в целом достигает 42-43%. В другой схеме парогазовой установки осуществляется использование теплоты отработавших газов турбины в котле. Возможность сброса отработавших газов турбины в топочную камеру котла основывается на том, что в камере сгорания ГТУ топливо (газ) сжигают с большим избытком воздуха и содержание кислорода в выхлопных газах (16-18%) является достаточным для сжигания основной массы топлива.



29. АЭС: устройство, типы реакторов, параметры, режимные характеристики.

АЭС относятся к тепловым ЭС, т.к. в их устройстве есть тепловыделители, теплоноситель и генератор эл. тока – турбина.

АЭС могут быть конденсационными, теплофикационными (АТЭЦ), атомные станции теплоснабжения (АСТ).

Ядерные реакторы классифицируются по различным признакам:

1. по уровню энергии нейтронов:

На тепловых нейтронах

На быстрых нейтронах

2. по виду замедлителя нейтронов: водными, тяжеловодными, графитовыми.

3. по виду теплоносителя: водными, тяжеловодными, газовыми, жидко металлическими

4. по числу контуров: одно-, двух-, трех- контурные

В современных реакторах для деления ядер исходного топлива используются в основном тепловые нейтроны. Все они имеют прежде всего так называемую активную зону , в которую загружается ядерное топливо, содержащее уран 235 замедлитель (обычно графит или вода). Для сокращения утечки нейтронов из активной зоны последнюю окружают отражателем, выполненным обычно из того же материала, что и замедлитель.

За отражателем снаружи реактора размещается бетонная защита от радиоактивных излучений. Загрузка реактора ядерным топливом обычно значительно превышает критическую. Чтобы по мере выгорания топлива непрерывно поддерживать реактор в критическом состоянии, в активную зону вводят сильный поглотитель нейтронов в виде стержней из карбамида бора. Такие стержни называютрегулирующими или компенсирующими. В процессе деления ядра выделяется большое количество теплоты, которая отводиться теплоносителем в теплообменник парогенератора , где она превращается в рабочее тело – пар. Пар поступает в турбину и вращает ее ротор, вал которого соединен с валом генератора . Отработавший в турбине пар попадает в конденсатор , после которого сконденсированная вода вновь идет в теплообменник, и цикл повторяется.

Как устроена ТЭЦ? Агрегаты ТЭЦ. Оборудование ТЭЦ. Принципы работы ТЭЦ. ПГУ-450.

Здравствуйте , дорогие дамы и уважаемые господа!

Когда я учился в Московском Энергетическом Институте, мне не хватало практики. В институте имеешь дело в основном с "бумажками", а мне уже скорей хотелось видеть "железки". Часто было трудно понять, как устроен тот или иной агрегат, никогда ранее его не видя. Предлагаемые студентам эскизы не всегда позволяют понять полную картину, и мало кто себе мог представить истинную конструкцию, например, паровой турбины, рассматривая только картинки в книжке.

Данная страница призвана заполнить существующий пробел и предоставить всем интересующимся пусть не слишком подробную, но зато наглядную информацию о том как "изнутри" устроено оборудование Тепло-Электро Централи (ТЭЦ). В статье рассмотрен достаточно новый для России тип энергоблока ПГУ-450, использующий в своей работе смешанный цикл - парогазовый (большинство ТЭЦ используют пока только паровой цикл).

Преимущество данной страницы в том, что фотографии, представленные на ней, выполнены в момент строительства энергоблока, что позволило отснять устройство некоторого технологического оборудования в разобранном виде. На мой взгляд, данная страница окажется наиболее полезна для студентов энергетических специальностей - для понимания сути изучаемых вопросов, а также для преподавателей - для использования отдельных фотографий в качестве методического материала.

Источником энергии для работы данного энергоблока является природный газ. При сгорании газа выделяется тепловая энергия, которая затем используется для работы всего оборудования энергоблока.

Всего в схеме энергоблока работают три энергетические машины: две газовые турбины и одна паровая. Каждая из трех машин рассчитана на номинальную электрическую вырабатываемую мощность 150МВт.

Газовые турбины по принципу действия схожи с двигателями реактивных самолетов.

Для работы газовых турбин необходимы два компонента: газ и воздух. Воздух, с улицы, поступает через воздухозаборники. Воздухозаборники закрыты решетками, чтобы защитить газотурбинную установку от попадания птиц и всякого мусора. В них же смонтирована антиоблединительная система, предотвращающая намерзание льда в зимний период времени.

Воздух поступает на вход компрессора газотурбинной установки (осевого типа). После этого, в сжатом виде, он попадает в камеры сгорания, куда кроме воздуха подводится природный газ. Всего на каждой газотурбинной установке установлено по две камеры сгорания. Они расположены по бокам. На первой фотографии ниже воздуховод еще не смонтирован, а левая камера сгорания закрыта целлофановой пленкой, на второй - вокруг камер сгорания уже смонтирован помост, установлен электрогенератор:

На каждой камере сгорания установлено по 8 газовых горелок:

В камерах сгорания происходит процесс горения газовоздушной смеси и выделение тепловой энергии. Вот как выглядят камеры сгорания "изнутри" - как раз там, где непрерывно горит пламя. Стенки камер выложены огнеупорной футеровкой:

В нижней части камеры сгорания расположено маленькое смотровое окошечко, позволяющее наблюдать происходящие в камере сгорания процессы. Видеоролик ниже демонстрирует процесс горения газовоздушной смеси в камере сгорания газотурбинной установки в момент ее запуска и при работе на 30% номинальной мощности:

Воздушный компрессор и газовая турбина находятся на одном и том же валу, и часть крутящего момента турбины используется для привода компрессора.

Турбина производит больше работы, чем требуется для привода компрессора, и избыток этой работы используется для привода "полезной нагрузки". В качестве такой нагрузки используется электрогенератор электрической мощностью 150МВт - именно в нем вырабатывается электроэнергия. На фотографии ниже "серый сарай" - это как раз и есть электрогенератор. Электрогенератор также находится на одном валу с компрессором и турбиной. Все вместе вращается с частотой 3000 об/мин.

При прохождения газовой турбины продукты сгорания отдают ей часть своей тепловой энергии, однако далеко не вся энергия продуктов сгорания используется для вращения газовой турбины. Значительная часть этой энергии не может быть использована газовой турбиной, поэтому продукты сгорания на выходе газовой турбины (выхлопные газы) несут с собой еще очень много тепла (температура газов на выходе газовой турбины составляет порядка 500 ° С). В самолетных двигателях это тепло расточительно выбрасывается в окружающую среду, но на рассматриваемом энергоблоке оно используется далее - в паросиловом цикле. Для этого, выхлопные газы с выхода газовой турбины "вдуваются" снизу в т. н. "котлы-утилизаторы" - по одному на каждую газовую турбину. Две газовых турбины - два котла-утилизатора.

Каждый такой котел представляет собой сооружение высотой в несколько этажей.

В этих котлах тепловая энергия выхлопных газов газовой турбины используется для нагревания воды и превращения ее в пар. В последствии этот пар используется при работе в паровой турбине, но об этом чуть позже.

Для нагревания и испарения вода проходит внутри трубок диаметром примерно 30мм, расположенных горизонтально, а выхлопные газы от газовой турбины "омывают" эти трубки снаружи. Так происходит передача тепла от газов к воде (пару):

Отдав большую часть тепловой энергии пару и воде, выхлопные газы оказываются вверху котла-утилизатора и выводятся с помощью дымохода через крышу цеха:

С внешней стороны здания дымоходы от двух котлов-утилизаторов сходятся в одну вертикальную дымовую трубу:

Следующие фотографии позволяют оценить размеры дымоходов. На первой фотографии представлен один из "уголков", которыми дымоходы котлов-утилизаторов подсоединяются к вертикальному стволу дымовой трубы, на остальных фотографиях - процесс монтажа дымовой трубы.

Но вернемся к конструкции котлов-утилизаторов. Трубки, по которым проходит вода внутри котлов, разделены на множество секций - трубных пучков, которые образуют несколько участков:

1. Экономайзерный участок (который на данном энергоблоке имеет особое название - Газовый Подогреватель Конденсата - ГПК);

2. Испарительный участок;

3. Пароперегревательный участок.

Экономайзерный участок служит для подогрева воды от температуры порядка 40 ° С до температуры, близкой к температуре кипения. После этого вода поступает в деаэратор - стальную емкость, где параметры воды поддерживаются такими, что из нее начинают интенсивно выделятся растворенные в ней газы. Газы собираются вверху емкости и удаляются в атмосферу. Удаление газов, особенно кислорода, необходимо для предотвращения быстрой коррозии технологического оборудования, с которым контактирует наша вода.

Пройдя деаэратор, вода приобретает название "питательная вода" и поступает на вход питательных насосов. Вот как выглядели питательные насосы, когда их только что привезли на станцию (всего их 3шт.):

Питательные насосы имеют электропривод (асинхронные двигатели питаются от напряжения 6кВ и имеют мощность 1.3МВт). Между самим насосом и электромотором находится гидромуфта - агрегат , позволяющий плавно изменять частоту вращения вала насоса в широких пределах.

Принцип действия гидромуфты схож с принципом действия гидромуфты в автоматических коробках передач автомобилей.

Внутри находятся два колеса с лопатками, одно "сидит" на валу электромотора, второе - на валу насоса. Пространство между колесами может быть заполнено маслом на разный уровень. Первое колесо, вращаемое двигателем, создает поток масла, "ударяющийся" в лопатки второго колеса, и вовлекающий его во вращение. Чем больше масла будет залито между колесами, тем лучшее "сцепление" будут иметь валы между собой, и тем большая механическая мощность будет передана через гидромуфту к питательному насосу.

Уровень масла между колесами изменяется с помощью т. н. "черпаковой трубы", откачивающей масло из пространства между колес. Регулирование положения черпаковой трубы осуществляется с помощью специального исполнительного механизма.

Сам по себе питательный насос центробежный, многоступенчатый. Заметьте, этот насос развивает полное давление пара паровой турбины и даже превышает его (на величину гидравлических сопротивлений оставшейся части котла-утилизатора, гидравлических сопротивлений трубопроводов и арматуры).

Конструкцию рабочих колес нового питательного насоса увидеть не удалось (т. к. он уже был собран), но на территории станции удалось обнаружить части старого питательного насоса схожей конструкции. Насос состоит из чередующихся вращающихся центробежных колес и неподвижных направляющих дисков.

Неподвижный направляющий диск:

Рабочие колеса:

С выхода питательных насосов питательная вода подается в т. н. "барабаны-сепараторы" - горизонтальные стальные емкости, предназначенные для разделения воды и пара:

На каждом котле-утилизаторе установлены по два барабана-сепаратора (всего 4 на энергоблоке). В совокупности с трубками испарительных секций внутри котлов-утилизаторов, они образуют контуры циркуляции пароводяной смеси. Работает это следующим образом.

Вода с температурой, близкой к температуре кипения, поступает внутрь трубок испарительных секций, протекая по которым догревается до температуры кипения и затем частично превращается в пар. На выходе испарительного участка мы имеем пароводяную смесь, которая поступает в барабаны-сепараторы. Внутри барабанов-сепараторов смонтированы специальные устройства

Которые помогают отделить пар от воды. Пар затем подается на пароперегревательный участок, где его температура еще более увеличивается, а отделенная в барабане-сепараторе (отсепарированная) вода смешивается с питательной водой и снова поступает в испарительный участок котла-утилизатора.

После пароперегревательного участка пар из одного котла-утилизатора смешивается с таким же паром второго котла-утилизатора и поступает на турбину. Его температура столь высока, что трубопроводы, по которым он проходит, если снять с них теплоизоляцию, - светятся в темноте темно-красным свечением. И теперь этот пар подается на паровую турбину, чтобы отдать в ней часть своей тепловой энергии и совершить полезную работу.

Паровая турбина имеет 2 цилиндра - цилиндр высокого давления и цилиндр низкого давления. Цилиндр низкого давления - двухпоточный. В нем пар разделяется на 2 потока, работающих параллельно. В цилиндрах находятся роторы турбины. Каждый ротор, в свою очередь, состоит из ступеней - дисков с лопатками. "Ударяясь" в лопатки, пар заставляет роторы вращаться. Фотография ниже отражает общую конструкцию паровой турбины: ближе к нам - ротор высокого давления, дальше от нас - двухпоточный ротор низкого давления

Вот так выглядел ротор низкого давления, когда его только распаковали из заводской упаковки. Заметьте, он имеет только 4 ступени (а не 8):

А вот ротор высокого давления при ближайшем рассмотрении. Он имеет 20 ступеней. Обратите также внимание на массивный стальной корпус турбины, состоящий из двух половинок - нижней и верхней (на фото только нижняя), и шпильки, с помощью которых эти половинки соединяется друг с другом. Чтобы при пуске корпус быстрее, но, в то же время, более равномерно прогревался, используется система парового обогрева "фланцев и шпилек" - видите специальный канал вокруг шпилек? Именно через него проходит специальный поток пара для прогрева корпуса турбины при ее пуске.

Чтобы пар "ударялся" в лопатки роторов и заставлял их вращаться, этот пар сначала нужно направить и ускорить в нужном направлении. Для этого используются т. н. сопловые решетки - неподвижные секции с неподвижными лопатками, размещенные между вращающимися дисками роторов. Сопловые решетки НЕ вращаются - они НЕподвижны, и служат только для направления и ускорения пара в нужном направлении. На фотографии ниже пар проходит "из за этих лопаток на нас" и "раскручивается" вокруг оси турбины против часовой стрелки. Далее, "ударяясь" во вращающиеся лопатки дисков ротора, которые находятся сразу за сопловой решеткой, пар передает свое "вращение" ротору турбины.

На фотографии ниже можно видеть части сопловых решеток, подготовленные для монтажа

А на этих фотографиях - нижнюю часть корпуса турбины с уже установленными в нее половинками сопловых решеток:

После этого в корпус "вкладывается" ротор, монтируются верхние половинки сопловых решеток, затем верхняя часть корпуса, далее различные трубопроводы, теплоизоляция и кожух:

Пройдя через турбину, пар поступает в конденсаторы. У данной турбины два конденсатора - по числу потоков в цилиндре низкого давления. Посмотрите на фотографию ниже. На ней хорошо видна нижняя часть корпуса паровой турбины. Обратите внимание на прямоугольные части корпуса цилиндра низкого давления, закрытые сверху деревянными щитами. Это - выхлопы паровой турбины и входы в конденсаторы.

Когда корпус паровой турбины оказывается полностью собран, на выходах цилиндра низкого давления образуется пространство, давление в котором при работе паровой турбины примерно в 20 раз ниже атмосферного, поэтому корпус цилиндра низкого давления проектируется не на сопротивление давлению изнутри, а на сопротивление давлению снаружи - т. е. атмосферному давлению воздуха. Сами конденсаторы находятся под цилиндром низкого давления. На фото ниже - это прямоугольные емкости с двумя люками на каждой.

Конденсатор устроен схоже с котлом-утилизатором. Внутри него находится множество трубок диаметром примерно 30мм. Если мы откроем один из двух люков каждого конденсатора и заглянем внутрь, мы увидим "трубные доски":

Сквозь эти трубки протекает охлаждающая вода, которая называется технической водой. Пар с выхлопа паровой турбины оказывается в пространстве между трубками снаружи них (за трубной доской на фото выше), и, отдавая остаточное тепло технической воде через стенки трубок, конденсируется на их поверхности. Конденсат пара стекает вниз, накапливается в конденсатосборниках (в нижней части кондесаторов), после чего попадает на вход конденсатных насосов. Каждый конденсатный насос (а всего их 5) приводится во вращение трехфазным асинхронным электродвигателем, рассчитанным на напряжение 6кВ.

С выхода конденсатных насосов вода (конденсат) снова поступает на вход экономайзерных участков котлов-утилизаторов и, тем самым, паросиловой цикл замыкается. Вся система является почти герметичной и вода, являющаяся рабочим телом, многократно превращается в пар в котлах-утилизаторах, в виде пара совершает работу в турбине, чтобы снова превратиться в воду в конденсаторах турбины и т. д.

Эта вода (в виде воды или пара) постоянно контактирует с внутренними деталям технологического оборудования, и чтобы не вызывать их быструю коррозию и износ - специальным образом химически подготавливается.

Но вернемся к конденсаторам паровой турбины.

Техническая вода, нагретая в трубках конденсаторов паровой турбины, по подземным трубопроводам технического водоснабжения выводится из цеха и подается в градирни - чтобы в них отдать тепло, отнятое у пара из турбины, окружающей атмосфере. На фотографиях ниже приведена конструкция градирни, возведенной для нашего энергоблока. Принцип ее работы основан на разбрызгивании внутри градирни теплой технической воды с помощью душирующих устройств (от слова "душ"). Капли воды падают вниз и отдают свое тепло воздуху, находящемуся внутри градирни. Нагретый воздух поднимается вверх, а на его место снизу градирни приходит холодный воздух с улицы.

Вот как выглядит градирня у своего основания. Именно через "щель" снизу градирни приходит холодный воздух для охлаждения технической воды

Снизу градирни находится водосборный бассейн, куда падают и где собираются капли технической воды, выпущенные из душирующих устройств и отдавшие свое тепло воздуху. Над бассейном расположена система раздающих труб, по которым теплая техническая вода подводится к душирующим устройствам

Пространство над и под душирующими устройствами заполняется специальной набивкой из пластмассовых жалюзи. Нижние жалюзи предназначены для более равномерного распределения "дождя" по площади градирни, а верхние жалюзи - для улавливания мелких капелек воды и предотвращения излишнего уноса технической воды вместе с воздухом через верх градирни. Однако, на момент отснятия представленных фотографий, пластмассовые жалюзи еще не были установлены.

Бо "льшая же по высоте часть градирни ничем не заполнена и предназначена только для создания тяги (нагретый воздух поднимается вверх). Если мы встанем над раздающими трубопроводами, мы увидим, что выше ничего нет и остальная часть градирни - пустая

Следующий видеоролик передает впечатления от нахождения внутри градирни

На тот момент, когда были отсняты фотографии этой странички, градирня, построенная для нового энергоблока - еще не функционировала. Однако, на территории данной ТЭЦ были другие градирни, которые работали, что позволило запечатлеть похожую градирню в работе. Стальные жалюзи внизу градирни предназначены для регулирования потока холодного воздуха и предотвращения переохлаждения технической воды в зимний период времени

Охлажденная и собранная в бассейне градирни техническая вода снова подается на вход трубок конденсатора паровой турбины, чтобы отнять у пара новую порцию тепла и т. д. Кроме того, техническая вода используется для охлаждения прочего технологического оборудования, например, электрогенераторов.

Следующий видеоролик показывает, как в градирне охлаждается техническая вода.

Поскольку техническая вода непосредственно контактирует с окружающим воздухом, в нее попадает пыль, песок, трава и прочая грязь. Поэтому на входе этой воды в цех, на входном трубопроводе технической воды, установлен самоочищающийся фильтр. Этот фильтр состоит из нескольких секций, укрепленных на вращающемся колесе. Через одну из секций, время от времени, организуется обратный поток воды для ее промывки. Затем колесо с секциями поворачивается, и начинается промывка следующей секции и т. д.

Вот так выглядит этот самоочищающийся фильтр изнутри трубопровода технической воды:

А так снаружи (приводной электромотор еще не смонтирован):

Здесь следует сделать отступление и сказать, что монтаж всего технологического оборудования в турбинном цехе осуществляется с помощью двух мостовых кранов. Каждый кран имеет по три отдельных лебедки, предназначенных для работы с грузами разных масс.

Теперь я бы хотел немного рассказать об электрической части данного энергоблока.

Электроэнергия вырабатывается с помощью трех электрогенераторов, приводимых во вращение двумя газовыми и одной паровой турбиной. Часть оборудования для монтажа энергоблока была привезена автотранспортом, а часть железнодорожным. Прямо в турбинный цех проложена железная дорога, по которой при строительстве энергоблока подвозили крупногабаритное оборудование.

На фотографии ниже запечатлен процесс доставки статора одного из электрогенераторов. Напомню, что каждый электрогенератор имеет номинальную электрическую мощность 150МВт. Заметьте, что железнодорожная платформа, на которой привезли статор электрогенератора, имеет 16 осей (32 колеса).

Железная дорога имеет в месте въезда в цех небольшое закругление, и учитывая, что колеса каждой колесной пары жестко закреплены на своих осях, при движении на закругленном участке железной дороги одно из колес каждой колесной пары вынуждено проскальзывать (т. к. на закруглении рельсы имеют разную длину). Приведенный ниже видеоролик показывает, как это происходило при движении платформы со статором электрогенератора. Обратите внимание на то, как подпрыгивает песок на шпалах в моменты проскальзывания колес по рельсам.

Ввиду большой массы, монтаж статоров электрогенераторов осуществлялся с применением обоих мостовых кранов:

На фотографии ниже приведен внутренний вид статора одного из электрогенераторов:

А вот так осуществлялся монтаж роторов электрогенераторов:

Выходное напряжение генераторов составляет порядка 20кВ. Выходной ток - тысячи ампер. Эта электроэнергия выводится из турбинного цеха и поступает на повышающие трансформаторы, находящиеся снаружи здания. Для передачи электроэнергии от электрогенераторов к повышающим трансформаторам используются вот такие электропроводы (ток течет по центральной алюминиевой трубе):

Для измерения тока в этих "проводах" используются вот такие трансформаторы тока (на третьей фотографии выше такой же трансформатор тока стоит вертикально):

На фотографии ниже представлен один из повышающих трансформаторов. Выходное напряжение - 220кВ. С их выходов электроэнергия подается в электросеть.

Кроме электрической энергии, ТЭЦ вырабатывает также тепловую энергию, используемую для отопления и горячего водоснабжения близлежащих районов. Для этого, в паровой турбине выполнены отборы пара, т. е. часть пара выводится из турбины не дойдя до конденсатора. Этот, еще достаточно горячий пар, поступает в сетевые подогреватели. Сетевой подогреватель - это теплообменник. По конструкции он очень похож на конденсатор паровой турбины. Отличие состоит в том, что в трубках течет не техническая вода, а сетевая вода. Сетевых подогревателей на энергоблоке два. Давайте снова рассмотрим фотографию с конденсаторами провой турбины. Прямоугольные емкости - конденсаторы, а "круглые" - этот как раз и есть сетевые подогреватели. Напоминаю, что все это расположено под паровой турбиной.

Подогретая в трубках сетевых подогревателей сетевая вода подается по подземным трубопроводам сетевой воды в тепловую сеть. Обогрев здания районов, расположенных вокруг ТЭЦ, и отдав им свое тепло, сетевая вода снова возвращается на станцию, чтобы снова быть подогретой в сетевых подогревателях и т. д.

Работа всего энергоблока контролируется АСУ ТП "Овация" американской корпорации "Эмерсон"

А вот как выглядит кабельный полуэтаж, находящийся под помещением АСУ ТП. По этим кабелям в АСУ ТП поступают сигналы от множества датчиков, а также уходят сигналы на исполнительные механизмы.

Спасибо за то, что посетили эту страницу !

ПГУ Установка, предназначенная для одновременного преобразования энергии двух рабочих тел пара и газа, в механическую энергию. [ГОСТ 26691 85] парогазовая установка Устройство, включающее радиационные и конвективные поверхности нагрева,… …

Парогазовая установка - устройство, включающее радиационные и конвективные поверхности нагрева, генерирующие и перегревающие пар для работы паровой турбины за счет сжигания органического топлива и утилизации теплоты продуктов сгорания, используемых в газовой турбине в… … Официальная терминология

Парогазовая установка - ГТУ 15. Парогазовая установка Установка, предназначенная для одновременного преобразования энергии двух рабочих тел пара и газа, в механическую энергию Источник: ГОСТ 26691 85: Теплоэнергетика. Термины и определения оригинал документа 3.13 парог … Словарь-справочник терминов нормативно-технической документации

парогазовая установка с внутрицикловой газификацией биомассы - (в зависимости от используемой технологии газификации КПД достигает 36 45 %) [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN biomass integrated gasification combined cycle plant … Справочник технического переводчика

парогазовая установка с внутрицикловой газификацией угля - — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN gasification combined cycle plant … Справочник технического переводчика

парогазовая установка с внутрицикловой газификацией угля (ПГУ-ВГУ) - — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN coal gasification power plantintegrated coal gasification combined cycle plant … Справочник технического переводчика

парогазовая установка с внутрицикловой газификацией угля на воздушном дутье - — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN air blown integrated coal gasification combined cycle plant … Справочник технического переводчика

парогазовая установка с внутрицикловой газификацией угля на кислородном дутье - — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN oxygen blown integrated coal gasification combined cycle plant … Справочник технического переводчика

парогазовая установка с дожиганием топлива - — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN combined cycle plant with supplemenary firing … Справочник технического переводчика

парогазовая установка с дополнительным сжиганием топлива - — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN supplementary fired combined cycle plant … Справочник технического переводчика

О статье, в которой подробно и простыми словами описан цикл ПГУ-450. Статья действительно очень легко усваивается. Я же хочу рассказать о теории. Коротко, но по-делу.

Материал я позаимствовал из учебного пособия «Введение в теплоэнергетику» . Авторы этого пособия — И. З. Полещук, Н. М. Цирельман. Пособие предлагается студентам УГАТУ (Уфимский государственный авиационный технический университет) для изучения одноименной дисциплины.

Газотурбинная установка (ГТУ) представляет собой тепловой двигатель, в котором химическая энергия топлива преобразуется сначала в теплоту, а затем в механическую энергию на вращающемся валу.

Простейшая ГТУ состоит из компрессора, в котором сжимается атмосферный воздух, камеры сгорания, где в среде этого воздуха сжигается топливо, и турбины, в которой расширяются продукты сгорания. Так как средняя температура газов при расширении существенно выше, чем воздуха при сжатии, мощность, развиваемая турбиной, оказывается больше мощности, необходимой для вращения компрессора. Их разность представляет собой полезную мощность ГТУ.

На рис. 1 показаны схема, термодинамический цикл и тепловой баланс такой установки. Процесс (цикл) работающей таким образом ГТУ называется разомкнутым или открытым. Рабочее тело (воздух, продукты сгорания) постоянно возобновляется — забирается из атмосферы и сбрасывается в нее. КПД ГТУ, как и любого теплового двигателя, представляет собой отношение полезной мощности N ГТУ к расходу теплоты, полученной при сжигании топлива:

η ГТУ = N ГТУ / Q T.

Из баланса энергии следует, что N ГТУ = Q T — ΣQ П, где ΣQ П — общее количество отведенной из цикла ГТУ теплоты, равное сумме внешних потерь.

Основную часть потерь теплоты ГТУ простого цикла составляют потери с уходящими газами:


ΔQух ≈ Qух — Qв; ΔQух — Qв ≈ 65…80%.

Доля остальных потерь значительно меньше:

а) потери от недожога в камере сгорания ΔQкс / Qт ≤ 3%;

б) потери из-за утечек рабочего тела; ΔQут / Qт ≤ 2%;

в) механические потери (эквивалентная им теплота отводится из цикла с маслом, охлаждающим подшипники) ΔNмех / Qт ≤ 1%;

г) потери в электрическом генераторе ΔNэг / Qт ≤ 1…2%;

д) потери теплоты конвекцией или излучением в окружающую среду ΔQокр / Qт ≤ 3%

Теплота, которая отводится из цикла ГТУ с отработавшими газами, может быть частично использована вне цикла ГТУ, в частности, в паросиловом цикле.

Принципиальные схемы парогазовых установок различных типов приведены на рис. 2.

В общем случае КПД ПГУ:

Здесь — Qгту количество теплоты, подведенной к рабочему телу ГТУ;

Qпсу — количество теплоты, подведенной к паровой среде в котле.

Рис. 1. Принцип действия простейшей ГТУ

а — принципиальная схема: 1 — компрессор; 2 — камера сгорания; 3 — турбина; 4 — электрогенератор;
б — термодинамический цикл ГТУ в ТS-диаграмме;
в — баланс энергии.

В простейшей бинарной парогазовой установке по схеме, показанной на рис. 2 а, весь пар вырабатывается в котле-утилизаторе: η УПГ = 0,6…0,8 (в зависимости, главным образом, от температуры уходящих газов).

При Т Г = 1400…1500 К η ГТУ ≈ 0,35, и тогда КПД бинарной ПГУ может дос-тигать 50-55 %.

Температура отработавших в турбине ГТУ газов высока (400-450оС), следовательно, велики потери теплоты с уходящими газами и КПД газотурбинных электростанций составляет 38 % , т. е. он практически такой же, как КПД современных паротурбинных электростанций.

Газотурбинные установки работают на газовом топливе, которое существенно дешевле мазута. Единичная мощность современных ГТУ достигает 250 МВт, что приближается к мощности паротурбинных установок. К преимуществам ГТУ по сравнению с паротурбинными установками относятся:

  1. незначительная потребность в охлаждающей воде;
  2. меньшая масса и меньшие капитальные затраты на единицу мощности;
  3. возможность быстрого пуска и форсирования нагрузки.

Рис. 2. Принципиальные схемы различных парогазовых установок:

а — ПГУ с парогенератором утилизационного типа;
б — ПГУ со сбросом газов в топку котла (НПГ);
в — ПГУ на парогазовой смеси;
1 — воздух из атмосферы; 2 — топливо; 3 — отработавшие в турбине газы; 4 — уходящие газы; 5 — вода из сети на охлаждение; 6 — отвод охлаждающей воды; 7 — свежий пар; 8 — питательная вода; 9 – промежуточный перегрев пара; 10 — регенеративные отбросы пара; 11 — пар, поступающий после турбины в камеру сгорания.
К — компрессор; Т — турбина; ПТ — паровая турбина;
ГВ, ГН — газоводяные подогреватели высокого и низкого давления;
ПВД, ПНД — регенеративные подогреватели питательной воды высокого и низкого давления; НПГ, УПГ — низконапорный, утилизационный парогенераторы; КС — камера сгорания.

Объединяя паротурбинную и газотурбинную установки общим технологическим циклом, получают парогазовую установку (ПГУ), КПД который существенно выше, чем КПД отдельно взятых паротурбинной и газотурбинной установок.

КПД парогазовой электростанции на 17-20 % больше, чем обычной паротурбинной электростанции. В варианте простейшей ГТУ с утилизацией тепла уходящих газов коэффициент использования тепла топлива достигает 82-85%.

К сожалению, переход на сооружение парогазовых ТЭЦ (ПГУ ТЭЦ) вместо паротурбинных привел к еще более резкому снижению теплофикации в общем производстве энергии. Это, в свою очередь, приводит к повышению энергоемкости ВВП и снижению конкурентоспособности отечественной продукции, а также увеличению затрат на жилищно-коммунальные нужды.

¦ высокий КПД выработки электроэнергии на ПГУ ТЭЦ по конденсационному циклу до 60%;

¦ трудности размещения ПГУ ТЭЦ в условиях плотной городской застройки, а также рост поставок топлива в города;

¦ по сложившейся традиции ПГУ ТЭЦ оснащаются, также как и паротурбинные станции, теплофикационными турбинами типа Т.

Строительство ТЭЦ с турбинами типа Р, начиная с 1990-х гг. прошлого века, было практически прекращено. В доперестроечное время около 60% тепловой нагрузки городов приходилось на долю промышленных предприятий. Их потребность в тепле для осуществления технологических процессов в течение года была достаточно стабильной. В часы утреннего и вечернего максимумов электропотребления городов пики электроснабжения сглаживались путем введения соответствующих режимов ограничения поставок электрической энергии промышленным предприятиям. Установка на ТЭЦ турбин типа Р была экономически оправдана из-за их меньшей стоимости и более эффективного расходования энергоресурсов по сравнению с турбинами типа Т. парогазовый энергоресурс топливо

Последние 20 лет из-за резкого спада промышленного производства существенно изменился режим энергоснабжения городов. В настоящее время городские ТЭЦ работают по отопительному графику, при котором летняя тепловая нагрузка составляет всего 15-20% расчетной величины. Суточный график электропотребления стал более неравномерным из-за включения электрической нагрузки населением в вечерние часы, который связан со шквальным ростом оснащения населения электрической бытовой техникой. Кроме того, выравнивание графика энергопотребления за счет введения соответствующих ограничений промышленных потребителей из-за их малой доли в общем энергопотреблении оказалось невозможным. Единственным не очень эффективным способом решения проблемы явилось сокращение вечернего максимума за счет введения сниженных тарифов в ночные часы .

Поэтому в паротурбинных ТЭЦ с турбинами типа Р, где выработка тепловой и электрической энергии жестко взаимосвязаны, применение таких турбин оказалось нерентабельным. Противодавленческие турбины производятся теперь только малой мощности для повышения эффективности работы городских паровых котельных путем перевода их в режим когенерации.

Такой установившийся подход сохранился и на сооружении ПГУ ТЭЦ. Вместе с тем при парогазовом цикле жесткая взаимосвязь между отпуском тепловой и электрической энергии отсутствует. На этих станциях с турбинами типа Р покрытие вечернего максимума электрической нагрузки может осуществляться путем временного увеличения отпуска электроэнергии в газотурбинном цикле. Кратковременное снижение отпуска тепла в систему теплоснабжения не сказывается на качестве отопления благодаря теплоаккумулирующей способности зданий и тепловой сети.

Принципиальная схема ПГУ ТЭЦ с противодавленческими турбинами включает две газовые турбины, котел-утилизатор, турбину типа Р и пиковый котел (рис. 2). Пиковый котел, который может быть установлен вне площадки ПГУ, на схеме не показан .

Из рис. 2 видно, что ПГУ ТЭЦ состоит из газотурбинной установки в составе компрессора 1, камеры сгорания 2 и газовой турбины 3. Выхлопные газы из ГТУ направляются в котел-утилизатор (КУ) 6 или в байпасную трубу 5 в зависимости от положения шибера 4 и проходят ряд теплообменников, в которых вода нагревается, пар сепарируется в барабанах низкого 7 и высокого давления 8, направляется в паротурбинную установку (ПТУ) 11. Причем насыщенный пар низкого давления поступает в промежуточный отсек ПТУ, а пар высокого давления предварительно перегревается в котле-утилизаторе и направляется в голову ПТУ Выходящий из ПТУ пар конденсируется в теплообменнике сетевой воды 12 и конденсатными насосами 13 направляется в газовой подогреватель конденсата 14, а затем направляется в деаэратор 9 и из него в КУ.

При тепловой нагрузке, не превышающей базовую, станция работает полностью по отопительному графику (АТЭЦ=1). Если тепловая нагрузка превышает базовую, включается пиковый котел. Потребное количество электроэнергии поступает от внешних источников генерации по городским электрическим сетям.

Однако возможны ситуации, когда потребность в электроэнергии превышает объем ее подачи от внешних источников: в морозные дни при росте потребления электроэнергии бытовыми нагревательными приборами; при авариях на генерирующих мощностях и в электрических сетях. В таких ситуациях величина мощности газовых турбин при традиционном подходе тесно привязана к производительности котла- утилизатора, которая в свою очередь диктуется потребностью в тепловой энергии в соответствии с отопительным графиком и может оказаться недостаточной для удовлетворения возросшего спроса на электроэнергию.

Чтобы покрыть возникший дефицит электроэнергии, газовая турбина переключается частично на сброс отработанных продуктов сгорания помимо котла-утилизатора непосредственно в атмосферу. Таким образом, ПГУ ТЭЦ переводится временно в смешанный режим - с парогазовым и газотурбинным циклами.

Известно, что газотурбинные установки обладают высокой маневренностью (скорости набора и сброса электрической мощности). Поэтому еще в советское время их предполагалось наряду с гидроаккумулирующими станциями использовать для сглаживания режима электроснабжения.

Кроме того, надо отметить, что развиваемая ими мощность увеличивается с понижением температуры наружного воздуха и именно при низких температурах в самое холодное время года наблюдается максимум электропотребления. Это показано в таблице .

При достижении мощности, составляющей более 60% от расчетной величины, выбросы вредных газов NOx и CO минимальны (рис. 3).

В межотопительный период, чтобы не допустить снижения мощности газовых турбин более чем на 40%, одна из них отключается.

Повышение энергетической эффективности ТЭЦ может быть достигнуто за счет централизованного холодоснабжения городских микрорайонов . При аварийных ситуациях на ПГУ ТЭЦ целесообразно в отдельных зданиях строить газотурбинные установки малой мощности .

В районах плотной городской застройки крупных городов при реконструкции существующих ТЭЦ с паровыми турбинами, выработавшими свой ресурс, целесообразно создавать на их базе ПГУ ТЭЦ с турбинами типа Р. В результате высвобождаются значительные площади, занятые системой охлаждения (градирни и др.), которые могут быть использованы для других целей.

Сопоставление ПГУ ТЭЦ с турбинами с противодавлением (типа Р) и ПГУ ТЭЦ с конденсационно-отборными турбинами (типа Т) позволяет сделать следующие выводы.

  • 1. И в том, и в другом варианте коэффициент полезного использования топлива зависит от доли выработки электроэнергии на базе теплового потребления в общем объеме генерации.
  • 2. В ПГУ ТЭЦ с турбинами типа Т потери тепловой энергии в контуре охлаждения конденсата имеют место в течение всего года; наибольшие потери - в летний период, когда размер теплового потребления ограничен только горячим водоснабжением.
  • 3. В ПГУ ТЭЦ с турбинами типа Р КПД станции снижается только в ограниченный промежуток времени, когда необходимо покрыть возникший дефицит в электроснабжении.
  • 4. Маневренные характеристики (скорости набора и сброса нагрузки) газовых турбин многократно выше характеристик паровых турбин.

Таким образом, для условий строительства станций в центрах больших городов ПГУ ТЭЦ с противодавленческими турбинами (типа Р) превосходят парогазовые ТЭЦ с конденсационноотборными турбинами (типа Т) по всем показателям. Для их размещения требуется значительно меньшая территория, они более экономично расходуют топливо и их вредное воздействие на окружающую среду также меньше.

Однако, для этого необходимо внести соответствующие изменения в нормативную базу по проектированию парогазовых станций.

Практика последних лет показывает, что инвесторами, сооружающими загородные ПГУ ТЭЦ и на достаточно свободных территориях, приоритет отдается выработке электроэнергии, а отпуск тепла рассматривается ими как побочный вид деятельности. Объясняется это тем, что КПД станций даже в конденсационном режиме может достигать 60%, а сооружение теплотрасс требует дополнительных затрат и многочисленных согласований с разными структурами. В итоге коэффициент теплофикации АТЭЦ может быть меньше 0,3.

Поэтому при проектировании ПГУ ТЭЦ нецелесообразно для каждой отдельной станции закладывать в техническом решении оптимальное значение АТЭЦ. Задача заключается в нахождении оптимальной доли теплофикации в системе теплоснабжения всего города.

Сейчас вновь стала актуальной разработанная в советское время концепция строительства мощных ТЭЦ в местах добычи топлива, вдали от больших городов. Это диктуется как увеличением доли использования местных видов топлива в ТЭК регионов, так и созданием новых конструкций теплопроводов (воздушная прокладка) с практически ничтожным падением температурного потенциала при транспортировке теплоносителя.

Подобные ТЭЦ могут создаваться как на основе паротурбинного цикла с непосредственным сжиганием местного топлива, так и парогазового цикла с использованием газа, получаемого на газогенераторных установках.