Показатели, характеризующие безотказность. Основные показатели качества

4. Объект должен обладать свойством сохранять способность выполнять требуемые функции в различные фазы его жизни: при рабочей эксплуатации, техническом обслуживании, ремонте, хранении и транспортировке.

Надёжность - важный показатель качества объекта. Его нельзя ни противопоставлять, ни смешивать с другими показателями качества. Явно недостаточной, например, будет информация о качестве установки очистки, если известно только то, что она обладает определенной производительностью и некоторым коэффициентом очистки, но неизвестно, насколько устойчиво сохраняются эти характеристики при ее работе. Бесполезна также информация о том, что установка устойчиво сохраняет присущие ей характеристики, но неизвестны значения этих характеристик. Вот почему в определение понятия надёжности входит выполнение заданных функций и сохранение этого свойства при использовании объекта по назначению.

Надёжность является комплексным свойством, включающим в себя в зависимости от назначения объекта или условий его эксплуатации ряд простых свойств:

    безотказность;

    долговечность;

    ремонтопригодность;

    сохраняемость.

Безотказность – свойство объекта непрерывно сохранять работоспособность в течение некоторой наработки или в течение некоторого времени.

Наработка – продолжительность или объем работы объекта, измеряемая в любых неубывающих величинах (единица времени, число циклов нагружения, километры пробега и т. п.).

Долговечность – свойство объекта сохранять работоспособность до наступления предельного состояния при установленной системе технического обслуживания и ремонтов.

Ремонтопригодность – свойство объекта, заключающееся в его приспособленности к предупреждению и обнаружению причин возникновения отказов, поддержанию и восстановлению работоспособности путем проведения ремонтов и технического обслуживания.

Сохраняемость – свойство объекта непрерывно сохранять требуемые эксплуатационные показатели в течение (и после) срока хранения и транспортирования.

В зависимости от объекта надёжность может определяться всеми перечисленными свойствами или частью их. Например, надёжность колеса зубчатой передачи, подшипников определяется их долговечностью, а станка – долговечностью, безотказностью и ремонтопригодностью.

2.1.4 Основные показатели надёжности

Показатель надёжности количественно характеризует, в какой степени данному объекту присущи определенные свойства, обусловливающие надёжность. Одни показатели надёжности (например, технический ресурс, срок службы) могут иметь размерность, ряд других (например, вероятность безотказной работы, коэффициент готовности) являются безразмерными.

Рассмотрим показатели составляющей надёжности - долговечность.

Технический ресурс – наработка объекта от начала его эксплуатации или возобновления эксплуатации после ремонта до наступления предельного состояния. Строго говоря, технический ресурс может быть регламентирован следующим образом: до среднего, капитального, от капитального до ближайшего среднего ремонта и т. п. Если регламентация отсутствует, то имеется в виду ресурс от начала эксплуатации до достижения предельного состояния после всех видов ремонтов.

Для невосстанавливаемых объектов понятия технического ресурса и наработки до отказа совпадают.

Назначенный ресурс – суммарная наработка объекта, при достижении которой эксплуатация должна быть прекращена независимо от его состояния.

Срок службы – календарная продолжительность эксплуатации (в том числе, хранение, ремонт и т. п.) от ее начала до наступления предельного состояния.

На рис.2.2 приведена графическая интерпретация перечисленных показателей, при этом:

t 0 = 0 – начало эксплуатации;

t 1 , t 5 – моменты отключения по технологическим причинам;

t 2 , t 4 , t 6 , t 8 – моменты включения объекта;

t 3 , t 7 – моменты вывода объекта в ремонт, соответственно, средний и капитальный;

t 9 – момент прекращения эксплуатации;

t 10 – момент отказа объекта.

Технический ресурс (наработка до отказа)

ТР = t 1 + (t 3 – t 2 ) + (t 5 – t 4 ) + (t 7 – t 6 ) + (t 10 – t 8 ).

Назначенный ресурс

ТН = t 1 + (t 3 –t 2 ) + (t 5 – t 4 ) + (t 7 –t 6 ) + (t 9 –t 8 ).

Срок службы объекта ТС = t 10 .

Для большинства объектов электромеханики в качестве критерия долговечности чаще всего используется технический ресурс.

2.2 Количественные показатели безотказности и математические модели надёжности

2.2.1 Статистические и вероятностные формы представления показателей безотказности невосстанавливаемых объектов

Наиболее важные показатели надёжности невосстанавливаемых объектов – показатели безотказности , к которым относятся:

    вероятность безотказной работы;

    плотность распределения отказов;

    интенсивность отказов;

    средняя наработка до отказа.

Показатели надёжности представляются в двух формах (определениях):

Статистическая (выборочные оценки);

Вероятностная.

Статистические определения (выборочные оценки) показателей получаются по результатам испытаний на надёжность.

Допустим, что в ходе испытаний какого-то числа однотипных объектов получено конечное число интересующего нас параметра – наработки до отказа. Полученные числа представляют собой выборку некоего объема из общей «генеральной совокупности», имеющей неограниченный объем данных о наработке до отказа объекта.

Количественные показатели, определённые для «генеральной совокупности», являются истинными (вероятностными) показателями, поскольку объективно характеризуют случайную величину – наработку до отказа.

Показатели, определённые для выборки, и, позволяющие сделать какие-то выводы о случайной величине, являются выборочными (статистическими) оценками. Очевидно, что при достаточно большом числе испытаний (большой выборке) оценки приближаются к вероятностным показателям.

Вероятностная форма представления показателей удобна при аналитических расчетах, а статистическая - при экспериментальном исследовании надежности.

В дальнейшем для обозначения статистических оценок будем использовать знак ^ сверху.

В дальнейших рассуждениях будем исходить из того, что испытания проходят N одинаковых объектов. Условия испытаний одинаковы, а испытания каждого из объектов проводятся до его отказа. Введем следующие обозначения:

Случайная величина наработки объекта до отказа;

N(t)- число объектов, работоспособных к моменту наработки t;

n(t) - число объектов, отказавших к моменту наработки t;

- число объектов, отказавших в интервале наработки ;

t - длительность интервала наработки.

Вероятность безотказной работы (ВБР)

и вероятность отказа (ВО)

Статистическое определение ВБР (эмпирическая функция надёжности) определяется по формуле:

(1)

т.е. ВБР есть отношение числа объектов(N (t )) , безотказно проработавших до момента наработки t , к числу объектов, исправных к началу испытаний (t=0), т.е. к общему числу объектов N . ВБР можно рассматривать как показатель доли работоспособных объектов к моменту наработки t .

Поскольку N(t)= N- n(t), то ВБР можно определить как

(2)

где
- вероятность отказа (ВО).

В статистическом определении ВО представляет эмпирическую функцию распределения отказов.

Так как события, заключающиеся в наступлении или ненаступлении отказа к моменту наработки t , являются противоположными, то

Нетрудно убедиться, что ВБР является убывающей, а ВО - возрастающей функцией наработки. Справедливы следующие утверждения:

1. В момент начала испытаний при t =0 число работоспособных объектов равно общему их числу N(t)=N(0)=N , а число объектов отказавших равно n(t)=n(0)=0. Поэтому
, а
;

2. При наработке t  все объекты, поставленные на испытания, откажут, т.е. N()=0 , а n()=N .

Поэтому,
, а
.

При большом числе элементов (изделий) N 0 статистическая оценка
практически совпадает с вероятностью безотказной работы P(t) , а
- с .

Вероятностное определение ВБР описывается формулой

т.е. ВБР есть вероятность того, что случайная величина наработки до отказа T окажется больше некоторой заданной наработки t .Надёжность электроэнергетических сетей и систем Реферат >> Математика

... технический университет Кафедра электромеханики факультет авиационного приборостроения Задание по дисциплине «Надёжность электроэнергетических систем» ... техническим риском клиентов (стимулирование создания резервных систем энергоснабжения и систем раннего...

  • Автоматизация и диспетчеризация систем электроснабжения

    Дипломная работа >> Коммуникации и связь

    Внешнего уровня; - обеспечение надёжного электроснабжения посредством автоматического измерения (контроля) технических параметров электроэнергии... энергоснабжения; интеграция охранных, пожарных систем , систем контроля доступа и CCTV; интеграция инженерного оборудования...

  • Основы надежности и технические измерения

    Шпаргалка >> Промышленность, производство

    Собой сложные технические системы и комплексы. Важным свойством таких систем является надёжность . Надежность - свойство... в целом. Повышение надежности подверженных старению технических систем в процессе эксплуатации может быть обеспечено...

  • Теоретические основы формирования экологической компетентности будущего инженера

    Реферат >> Педагогика

    ... : КурскГТУ, 1999. − 106 с. (6,3 п.л. / 3,5 п.л.). Рыжков, Ф.Н. Надёжность технических систем и управление риском [Текст]: учебное пособие... − 346 с. (21,4 п.л./15,7 п.л.). Акимов, В.А. Надёжность технических систем и техногенный риск [Текст]: учебное пособие...

  • Лекция . ПОКАЗАТЕЛИ НАДЁЖНОСТИ

    Важнейшей технической характеристикой качества является надежность. Надежность оценивается вероятностными характеристиками, основанными на статистиче­ской обработке экспериментальных данных.

    Основные понятия, термины и их определения, характери­зующие надежность техники и, в частности, изделий машино­строения, даны в ГОСТ 27.002-89.

    Надежность - свойство изделия сохранять в установленных пределах времени значения всех параметров, характеризующих способность выполнять требуемые функции в заданных режимах и условиях применения, технического обслуживания, ремон­тов, хранения, транспортировки и других действий.

    Надежность изделия - это комплексное свойство, которое может вклю­чать: безотказность, долговечность, ремонтопригодность, сохраняемость и т.п.

    Безотказность - свойство изделия непрерывно сохранять ра­ботоспособность в течение заданного времени или наработки в определенных условиях эксплуатации.

    Работоспособное состояние - состояние изделия, при кото­ром оно способно выполнять заданные функции, сохраняя при этом допустимые значения всех основных параметров, установ­ленных нормативно-технической документацией (НТД) и (или) проектно-конструкторской документацией.

    Долговечность - свойство изделия сохранять во времени ра­ботоспособность, с необходимыми перерывами для техничес­кого обслуживания и ремонта, до его предельного состояния, оговоренного технической документацией.

    Долговечность обусловлена наступлением таких событий, как повреждение или отказ.

    Повреждение - событие, заключающееся в нарушении ис­правности изделия.

    Отказ - событие, в результате которого происходит полная или частичная утрата работоспособности изделия.

    Исправное состояние - состояние, при котором изделие со­ответствует всем требованиям нормативно-технической и (или) проектно-конструкторской документации.

    Неисправное состояние - состояние, при котором изделие не удовлетворяет хотя бы одному из требований нормативно-технической и (или) проектно-конструкторской документации.

    Неисправное изделие может быть работоспособным. Напри­мер, снижение плотности электролита в аккумуляторных батаре­ях, повреждение облицовки автомобиля означают неисправное состояние, но такой автомобиль работоспособен. Неработоспо­собное изделие является одновременно и неисправным.

    Наработка - продолжительность (измеряемая, например, в часах или циклах) или объем работы изделия (измеряемый, например, в тоннах, километрах, кубометрах и т п. единицах).

    Ресурс - суммарная наработка изделия от начала его эксплуатации или ее возобновления после ремонта до перехода в предельное состояние.

    Предельное состояние - состояние изделия, при котором его дальнейшая эксплуатация (применение) недопустима по требо­ваниям безопасности или нецелесообразна по экономическим причинам. Предельное состояние наступает в ре­зультате исчерпания ресурса или в аварийной ситуации.

    Срок службы - календарная продолжительность эксплуата­ции изделий или ее возобновления после ремонта от начала его применения до наступления предельного состояния

    Неработоспособное состояние - состояние изделия, при ко­тором оно не способно нормально выполнять хотя бы одну из заданных функций.

    Перевод изделия из неисправного или неработоспособного состояния в исправное или работоспособное происходит в ре­зультате восстановления.

    Восстановление - процесс обнаружения и устранения отказа (повреждения) изделия с целью восстановления его работоспо­собности (устранение неисправности).

    Основным способом восстановления работоспособности яв­ляется ремонт.

    Ремонтопригодность - свойство изделия, заключающееся в его приспособленности к поддержанию и восстановлению ра­ботоспособного состояния путем обнаружения и устранения дефекта и неисправности технической диагностикой, обслужи­ванием и ремонтом.

    Сохраняемость - свойство изделий непрерывно сохранять зна­чения установленных показателей его качества в заданных пре­делах в течение длительного хранения и транспортирования

    Срок сохраняемости - календарная продолжительность хра­нения и (или) транспортирования изделия в заданных услови­ях, в течение и после которых сохраняются исправность, а так­же значения показателей безотказности, долговечности и ремонтопригодности в пределах, установленных нормативно-тех­нической документацией на данный объект.

    Н

    Рис. 1. Схема состояний издели

    адежность постоянно изменяется в процессе эксплуатации технического изделия и при этом характеризует его состояния. Схема изменения состояний эксплуатируемого изделия приве­дена ниже (рис. 1).

    Для количественной характеристики каждого из свойств надеж­ности изделия служат такие единичные показатели, как наработка до отказа и на отказ, наработка между отказами, ресурс, срок служ­бы, срок сохраняемости, время восстановления. Значения этих ве­личин получают по данным испытаний или эксплуатации.

    Комплексные показатели надежности, так же как коэффи­циент готовности, коэффициент технического использования и коэффициент оперативной готовности, вычисляются поданным единичных показателей. Номенклатура показателей надежности приведена в табл. 1.

    Таблица 1. Примерная номенклатура показателей надежности

    Свойство надежности

    Наименование показателя

    Обозначение

    Единичные показатели

    Безотказност ь

    Вероятность безотказной работы Средняя наработка до отказа

    Средняя наработка на отказ

    Средняя наработка между отказами Интенсивность отказов

    Поток отказов восстанавливаемого изделия

    Средняя частота отказов

    Вероятность отказов

    Долговечность

    Средний ресурс

    Гамма-процентный ресурс Назначенный ресурс

    Установленный ресурс

    Средний срок службы

    Гамма-процентный срок службы Назначенный срок службы Установленный срок службы

    Ремонтопригод­ность

    Среднее время восстановления Вероятность восстановления Коэффициент ремонтосложности

    Сохраняемость

    Средний срок сохраняемости

    Гамма-процентный срок сохраняемости

    Назначенный срок хранения Установленный срок сохраняемости

    Обобщенные показатели

    Совокупность свойств

    Коэффициент готовности Коэффициент технического использования

    Коэффициент оперативной готовности

    Показатели, характеризующие безотказность

    Вероятность безотказной работы отдельного изделия оцени­вается как:

    где Т - время от начала работы до отказа;

    t - время, для которого определяется вероятность безотказ­ной работы.

    Величина T может быть больше, меньше или равна t . Следо­вательно,

    Вероятность безотказной работы - это статистический и от­носительный показатель сохранения работоспособности одно­типных изделий серийного производства, выражающий вероят­ность того, что в пределах заданной наработки отказ изделий не наступает. Для установления значения вероятности безотказной работы серийных изделий используют формулу для среднеста­тистического значения:

    где N - число наблюдаемых изделий (или элементов);

    N o - число отказавших изделий за время t ;

    N р - число работоспособных изделий к концу времени t испытаний или эксплуатации.

    Вероятность безотказной работы является одной из наиболее значимых характеристик надежности изделия, так как она охва­тывает все факторы, влияющие на надежность. Для вычисления вероятности безотказной работы используются данные, накап­ливаемые путем наблюдений за работой при эксплуатации или при специальных испытаниях. Чем больше изделий подвергает­ся наблюдениям или испытаниям на надежность, тем точнее определяется вероятность безотказной работы других однотип­ных изделий.

    Так как безотказная работа и отказ - взаимно противопо­ложные события, то оценку вероятности отказа (Q (t )) опреде­ляют по формуле:

    Расчет среднестатистического времени наработки до отказа (или среднего времени безотказной работы) по результатам на­блюдений определяют по формуле:

    где N o - число элементов или изделий, подвергнутых наблюде­ниям или испытаниям;

    T i - время безотказной работы i -го элемента (изделия).

    Статистическую оценку среднего значения наработки на от­каз вычисляют как отношение суммарной наработки за рас­сматриваемый период испытаний или эксплуатации изделий к суммарному числу отказов этих изделий за тот же период вре­мени:

    Статистическую оценку среднего значения наработки между отказами вычисляют как отношение суммарной наработки из­делия между отказами за рассматриваемый период испытаний или эксплуатации к числу отказов этого (их) объекта(ов) за тот же период:

    где т - число отказов за время t .

    Показатели долговечности

    Статистическая оценка среднего ресурса такова:

    где Т р i - ресурс i -го объекта;

    N - число изделий, поставленных на испытания или в экс­плуатацию.

    Гамма-процентный ресурс выражает наработку, в течение которой изделие с заданной вероятностью γ процентов не дос­тигает предельного состояния. Гамма-процентный ресурс явля­ется основным расчетным показателем, например для подшип­ников и других изделий. Существенное достоинство этого показателя в возможности его определения до завершения ис­пытаний всех образцов. В большинстве случаев для различных изделий используют критерий 90%-го ресурса.

    Назначенный ресурс - суммарная наработка, при достиже­нии которой применение изделия по назначению должно быть прекращено независимо от его технического состояния.

    Под установленным ресурсом понимается технически обосно­ванная или заданная величина ресурса, обеспечиваемая конст­рукцией, технологией и условиями эксплуатации, в пределах которой изделие не должно достигать предельного состояния.

    Статистическую оценку среднего срока службы определяют по формуле:

    I

    где Т сл i - срок службы i -го изделия.

    Гамма-процентный срок службы представляет собой календарную продолжительность эксплуатации, в течение которой изделие не достигает предельного состояния с вероятностью , выраженной в процентах. Для его расчета используют соотно­шение

    Назначенный срок службы - суммарная календарная продол­жительность эксплуатации, при достижении которой применение изделия по назначению должно быть прекращено независи­мо от его технического состояния.

    Под установленным сроком службы понимают технико-экономически обоснованный срок службы, обеспечиваемый кон­струкцией, технологией и эксплуатацией, в пределах которого изделие не должно достигать предельного состояния.

    Основной причиной снижения показателей дол­говечности изделия является износ его деталей.

    В середине прошлого столетия строительной отрасли перешла к высшему этапу индустриализации – стандартизации. С этого момента основным показателем функциональных качеств жилого здания (уровень безопасности и комфортности проживания, соответствие санитарно-гигиеническим и противопожарным требованиям) – была выбрана надежность сооружения.

    Надёжность сооружения – свойство основных конструктивных элементов сохранять значения установленных параметров функционирования в определённых пределах, соответствующих заданным режимам и условиям использования, технического обслуживания и эксплуатации.

    По ГОСТ 27751-88 «Надежность строительных конструкций и оснований» строительные конструкции и основания должны быть изначально запроектированы таким образом, чтобы они обладали достаточной надежностью при возведении и эксплуатации с учетом, при необходимости, особых воздействий (например, в результате землетрясения, наводнения, пожара, взрыва).

    Для оценки надежности строительного объекта, как комплексного его свойства, выделяют три основных критерия, закладываемых на момент проектирования сооружения:

      безотказность свойство объекта непрерывно сохранять заданную работоспособность в течение определенного периода времени;

      долговечность – свойство объекта сохранять работоспособность до наступления предельного состояния (отказа) при установленной системе технического обслуживания и ремонтов (ГОСТ 18322-78), т.е. с возможными перерывами в работе;

      ремонтопригодность — свойство объекта, заключающееся в доступности и удобстве в проведении мероприятий по предупреждению и обнаружению причин возникновения отказов и повреждений, а также устранению их путем ремонта и обслуживания.

    В производстве строительных материалов и изделий в качестве важнейшего критерия надежности дополнительно учитывается сохраняемость свойств, т.е. длительное соответствие свойств материала или изделия — строго определенным стандартным требованиям.

    Показатели качества могут изменяться с течением времени. Изменение их, превышающее допустимые значения, приводит к возникновению отказового состояния (частичного или полного отказа сооружения). Основное понятие, используемое в теории надёжности, – понятие отказа , т.е. утраты работоспособности, наступающей либо внезапно, либо постепенно. Таким образом, весь период эксплуатации сооружения рассматривается с точки зрения теории надежности, как наработка на отказ Т.

    Согласно ГОСТ 133775, событие, заключающееся в нарушении работоспособности, называется отказом . Под наработкой на отказ понимают продолжительность работы объекта, т.е. нормативную долговечность , задаваемую технической типологией сооружения.

    Полной характеристикой любой случайной величины является ее закон распределения, т.е. соотношение между возможными значениями случайной величины и соответствующими этим значениям вероятностями.

    К числу показателей надежности относятся:

    — функция надежности p(t) ;

    — плотность распределения наработки до отказа f(t) ;

    — интенсивность отказов l(t) .

    Функцией надежности называют функцию, выражающую вероятность того, что Т – случайная наработка до отказа объекта – будет больше заданной наработки (0,t), отсчитываемой от начала эксплуатации, т.е.

    p(t)=P{Tіt}.

    Перечислим некоторые очевидные свойства p(t) :

    1) p(0)=1 , т.е. можно рассматривать безотказную работу лишь тех объектов, которые были изначально работоспособны;

    2) p(t) является монотонно убывающей функцией заданной наработки t ;

    3) любой объект со временем откажет.

    Наряду с p(t) используется функция ненадежности

    q(t)=1 — p(t)=P{T

    Функция ненадежности характеризует вероятность отказа объекта на интервале (0,t) . Функция ненадежности является функцией распределения случайной величины Т; эта функция иногда обозначается F(t) .

    Надёжность эксплуатируемого объекта может находиться в двух возможных состояниях – работоспособном и отказовом. Для выявления параметров каждого состояния необходимо знать следующие величины, характеризующие аналогичные здания и сооружения:

    Т ср – наработка до первого отказа;

    Т – наработка на отказ;

    l(t) — интенсивность отказов;

    w(t) — параметр потока отказов;

    t в — среднее время восстановления работоспособного состояния;

    вероятность безотказной работы за время t [Р (t)] ;

    K r — коэффициент готовности.

    Закон распределения наработки до отказа определяет количественные показатели надежности несменяемых конструкций и элементов в сооружении. Закон распределения записывается либо в дифференциальной форме плотности вероятности f(t) , либо в интегральной форме F(t) . Существуют следующие соотношения между показателями надёжности и законом распределения:

    Для сменяемых конструкций в сооружении вероятность появления n отказов за время t в случае простейшего потока отказов определяется законом Пуассона:

    Из него следует, что вероятность отсутствия отказов за время t равна Р(t) = exp(-lt) (экспоненциальный закон надёжности).

    Строительные конструкции и основания рассчитываются по методу предельных состояний , основные положения которого направлены на обеспечение безотказной работы конструкций и оснований с учетом изменчивости свойств материалов, грунтов, нагрузок и воздействий, геометрических характеристик конструкций, условий их работы, а также степени ответственности проектируемых объектов, определяемой материальным и социальным ущербом при нарушении их работоспособности.

    Предельные состояния (отказы) подразделяются на две группы:

    первая группа включает предельные состояния, которые ведут к полной непригодности к эксплуатации конструкций, оснований (зданий или сооружений в целом) или к полной (частичной) потере несущей способности зданий и сооружений в целом;

    вторая группа включает предельные состояния, затрудняющие нормальную эксплуатацию конструкций (оснований) или уменьшающие долговечность зданий (сооружений) по сравнению с предусматриваемым сроком службы.

    Предельные состояния первой группы характеризуются:

    разрушением любого характера (например, пластическим, хрупким, усталостным;

    потерей устойчивости формы, приводящей к полной непригодности к эксплуатации;

    потерей устойчивости положения;

    переходом в изменяемую систему;

    качественным изменением конфигурации;

    другими явлениями, при которых возникает необходимость прекращения эксплуатации (например, чрезмерными деформациями в результате ползучести, пластичности, сдвига в соединениях, раскрытия трещин, а также образованием трещин).

    Предельные состояния второй группы характеризуются:

    достижением предельных деформаций конструкций (например, предельных прогибов, поворотов) или предельных деформаций основания;

    достижением предельных уровней колебаний конструкций или оснований;

    образованием трещин;

    достижением предельных раскрытий или длин трещин;

    потерей устойчивости формы, приводящей к затруднению нормальной эксплуатации;

    другими явлениями, при которых возникает необходимость временного ограничения эксплуатации здания или сооружения из-за неприемлемого снижения их срока службы (например, коррозионные повреждения).

    Расчет по предельным состояниям имеет целью обеспечить надежность здания или сооружения в течение всего его срока службы эксплуатации, а также при производстве работ. Характеристики предельных состояний, определяемые визуально при общем осмотре и уточняемые при детальном обследовании, систематизированы в качестве признаков физического износа в ВСН 53-86р «Правила оценки физического износа жилых зданий».

    Эксплуатационная надежность строительных конструкций исчерпывается вследствие развития дефектов, причинами которых являются: накопление повреждений в элементах и узлах конструкций, определяемые износом и старением материалов, несоответствие фактических и расчетных схем, несоблюдение правил эксплуатации и т. д.

    Таким образом, постоянный контроль и регулярные технические осмотры и обследования жилых зданий должны предотвратить наступление предельных эксплуатационных состояний сооружения (отказов):

      аварийное (первое предельное состояние), при котором наступает полная утрата конструкцией несущей способности, что сопровождается аварийными ситуациями;

      предельно эксплуатационное состояние (второе предельное состояние), когда конструкции могут достигнуть таких статических или динамических перемещений, при которых невозможна эксплуатация сооружений.

    Условия обеспечения надежности жилого здания в течение всего периода нормативной долговечности заключается в том, чтобы расчетные значения нагрузок или ими вызванных усилий, напряжений, деформаций, перемещений, раскрытий трещин не превышали соответствующих им предельных значений, устанавливаемых нормами проектирования конструкций или оснований.

    Расчетные модели (в том числе расчетные схемы, основные предпосылки расчета) конструкций и оснований должны отражать действительные условия работы зданий или сооружений, отвечающие рассматриваемой расчетной ситуации. При этом должны учитываться факторы, определяющие напряженное и деформированное состояния, особенности взаимодействия элементов конструкций между собой и с основанием, пространственная работа конструкций, геометрическая и физическая нелинейности, пластические и реологические свойства материалов и грунтов, наличие трещин в железобетонных конструкциях, возможные отклонения геометрических размеров от их номинальных значений.

    То есть, все принимаемые расчетные схемы и модели на первоначальных стадиях проектирования объекта – должны учитывать результаты наблюдений, технических осмотров и обследований зданий с аналогичными типологическими признаками.

    При расчете конструкций должны рассматриваться следующие расчетные ситуации:

    установившаяся , имеющая продолжительность того же порядка, что и срок службы строительного объекта (например, эксплуатация между двумя капитальными ремонтами или изменениями технологического процесса);

    переходная , имеющая небольшую по сравнению со сроком службы строительного объекта продолжительность (например, возведение здания, капитальный ремонт, реконструкция);

    аварийная , имеющая малую вероятность появления и небольшую продолжительность, но являющаяся весьма важной с точки зрения последствий достижения предельных состояний, возможных при ней (например, ситуация, возникающая в связи со взрывом, столкновением, аварией оборудования, пожаром, а также непосредственно после отказа какого-либо элемента конструкции).

    Расчетные ситуации характеризуются расчетной схемой конструкции, видами нагрузок, значениями коэффициентов условий работы и коэффициентов надежности, перечнем предельных состояний, которые должны рассматриваться в данной ситуации.

    Время является важнейшей составляющей надежности. Продолжительность жизни одного и того же материала, абсолютно идентичных строительных изделий, — зависит от выбранной конструктивной схемы и условий эксплуатации. В жилых зданиях условия эксплуатации являются нормативными. Поэтому критерий долговечности в жилых зданиях определяет, прежде всего, типология самого сооружения.

    По типологии жилые здания делятся на традиционные , строившиеся до 1960 г., и индустриальные , к возведению которых отрасль перешла при решении жилищной программы в начале 60-х годов прошлого столетия.

    По конструктивной схеме индустриальные сооружения отличаются тем, что имеют горизонтальный диск жесткости в виде железобетонных перекрытий. В традиционных зданиях такого горизонтального диска не имеется, поскольку даже в лучших традиционных сооружениях используются смешанные перекрытия: деревянные в основной части сооружения и железобетонные монолитные на путях эвакуации. Пространственную жесткость в традиционных сооружениях обеспечивают вертикальные диафрагмы жесткости – наружные и внутренние несущие стены.

    Рис. 1. Устройство сборных железобетонных перекрытий в жилом доме индустриального типа и деревянного перекрытия по деревянным балкам – в традиционном сооружении.

    Таким образом, для жилых зданий установлены шесть групп капитальности, включающей не только серийные сооружения, но и довоенные, дореволюционные здания, а также все типы некапитальных сооружений. Определяющим потребительским качеством функции для всех типов зданий стала долговечность.

    К индустриальному жилью изначально относилась лишь одна группа – «Особо капитальные», стенового типа – с несущими продольными или поперечными стенами.

    Конструктивной системой здания называется совокупность взаимосвязанных конструкций здания, обеспечивающих его прочность, жесткость и устойчивость.

    Принятая на период проектирования сооружения конструктивная система должна обеспечивать прочность, жесткость и устойчивость здания на стадии возведения и в период эксплуатации при действии всех расчетных нагрузок и воздействий. Для полносборных зданий индустриального типа предусматривались меры, предотвращающие прогрессирующее (цепное) разрушение несущих конструкций здания в случае локального разрушения отдельных конструкций при аварийных воздействиях (взрывах бытового газа или других взрывоопасных веществ, пожарах и т.п.).

    Конструктивные системы индустриальных жилых зданий классифицируются по типу вертикальных несущих конструкций: стены, каркас и стволы (ядра жесткости), которым соответствуют стеновые, каркасные и ствольные конструктивные системы. При применении в одном здании в каждом этаже нескольких типов вертикальных конструкций различаются каркасно-стеновые, каркасно-ствольные и ствольно-стеновые системы. При изменении конструктивной системы здания по его высоте (например, в нижних этажах - каркасная, а в верхних - стеновая), конструктивная система называется комбинированной.


    До недавнего времени каркасная система несущих конструкций со свободной планировкой в жилых зданиях ограничивалась требованиями пожарной безопасности, поскольку при использовании этой схемы было сложно выполнить брандмауэры – несгораемые вертикальные преграды огню. При использовании сборного железобетонного каркаса в первых крупнопанельных жилых сериях – в сооружении применялись вертикальные диафрагмы жесткости, превращающие каркасную схему — в стеновую. Впоследствии от каркасной системы отрасль перешла к системе с несущими наружными и внутренними панелями.

    Рис. 2. Конструктивные типы гражданских зданий: а - бескаркасный; б - каркасный; в - с неполным каркасом; 1 - несущие стены; 2 - междуэтажные перекрытия; 3 - колонны; 4 - ригели; 5 - самонесущие стены

    На основании анализа долголетних наблюдений для зданий и сооружений были разработаны .

    Расчетные сроки службы для зданий различных групп капитальности были установлены «Положением о проведении планово-предупредительного ремонта жилых и общественных зданий», утвержденным в 1964 г. Госстроем СССР, а также соответствующими положениями о ремонте производственных зданий и объектов другого назначения.

    Долговечность индустриальных сооружений обуславливалась не только новым конструктивом, но и увеличением удельного веса несменяемых элементов, что вело к значительному сокращению эксплуатационных расходов.

    В лучших домах традиционной, несерийной (традиционной) постройки доля несменяемых конструкций достигала примерно 42% (к несменяемым относились фундаменты, стены, лестницы). Остальные элементы (прежде всего, деревянные перекрытия) предполагалось заменять по мере их износа в процессе эксплуатации.

    В индустриально построенных зданиях несменяемые конструкции составили 53% , так как к ним добавились несменяемые сборные железобетонные перекрытия, была значительно увеличена долговечность фундаментов. Так же несменяемой стала считаться и крыша, поскольку при развитии серийных сооружений произошла повсеместная замена скатных крыш на плоские с внутренним водостоком.

    Следует отметить, что увеличение объема несменяемых элементов приводил к значительному удорожанию проектирования и строительства жилого дома. Именно это противоречие снимали индустриальные подходы к возведению жилья – только заводская штамповка могла быть широко доступна всем слоям населения.

    Удельный вес стоимости несменяемых элементов

    Конструкции

    Удельный вес стоимости, % общей стоимости

    в кирпичных зданиях старой постройки

    в серийных кирпичных и полносборных зданиях

    Фундаменты

    5

    Оценка безопасности зданий и сооружений.

    Техническое освидетельствование сооружений позволяет установить их надежность на момент обследования. Однако для заключения о дальнейшей эксплуатации, установления срока службы и ремонта сооружения необходимо знать изменение этих свойств с течением времени. Например, если с течением времени бетонные конструкции сохраняют свои прочностные характеристики, то многие новые синтетические материалы зачастую теряют свои строительные свойства в период 10-20 лет, что не может быть приемлемым для капитальных зданий и сооружений.

    При эксплуатации сооружений для оценки технического состояния конструкций широко применяют визуальные обследования. Для этой цели существуют методические рекомендации и табличные данные для оценки результатов наблюдений, по которым устанавливается надежность обследуемых конструкций по внешним признакам их состояния и оценка повреждений. Более точные данные получают при инструментальных измерениях различными приборами на основе физических, радиологических, электромагнитных и других воздействий.

    Как показали наблюдения, в процессе эксплуатации конструкций происходит циклическое изменение их надежности, что связывают с изменчивостью нагрузок и несущей способности вследствие различных повреждений.

    Повреждения в конструкции могут быть двух видов в зависимости от причин их возникновения: от силовых воздействий и от воздействия внешней среды (температурные перепады, коррозионные процессы, микробиологическое воздействие и т.д.). Последний вид повреждений снижает не только прочность конструкции, но и уменьшает ее долговечность.

    Особое внимание должно быть уделено опасности террористических воздействий, ставшей актуальной в последнее время. Степень зашиты от террористических и других аварийных воздействий и экономическое обоснование мер зашиты должны определяться в зависимости от значимости этих объектов для жизнедеятельности города (объекты управления и т.п.).

    Прогнозирование аварийных ситуаций

    Анализ экстремальных ситуаций в строительной практике показал, что аварии прямо или косвенно связаны с нарушением требований норм и правил проектирования и технологии строительства зданий и сооружений.

    Соблюдение действующих норм и правил гарантирует надежность строительных объектов при различных природных воздействиях и обеспечивает безопасность человека в процессе их квалифицированной эксплуатации. Вероятность повреждений этих объектов обычно не превышает 2,4 · 10-6, что является приемлемым из условий экономической целесообразности.

    Оценка риска в условиях прогноза ЧС

    Исследование причин аварий послужило основанием для оценки возможности возникновения условий, влияющих на надежность сооружения. К числу этих условий относятся надежность проектных решений, качество строительства и эксплуатации.

    Недостаточная надежность проекта может возникнуть вследствие:

    • 1) несоответствия принятой расчетной модели действительной работе конструкций из-за отсутствия или неполноты использования требований норм и стандартов на проектирование, неясности расчетных схем, неправильного определения нагрузок и условий эксплуатации объекта, а также неверного учета сопротивляемости несущих и ограждающих конструкций временным и случайным воздействиям;
    • 2) недостаточной проверки и неверной инженерной оценки принимаемого конструктивного решения в реальных условиях (отсутствие опыта эксплуатации проектируемых зданий и сооружений, значительного отличия размеров проектируемого объекта и нагрузок в сравнении с построенными ранее аналогичными сооружениями и т.д.);
    • 3) нарушения строительных норм и правил при выполнении проектирования в части: полноты и достоверности инженерно-геологических исследований, учета агрессивности внешней среды, ошибки в определении нагрузок и воздействий, неверных допусков на изготовление конструкций и изделий, низкое качество материалов, нарушения методов строительства и правил эксплуатации и др.;
    • 4) допущенных ошибок из-за отсутствия достаточного опыта и квалификации проектировщиков, недостатка времени или средств на детальное проектирование.

    Некачественное строительство объектов может возникнуть вследствие:

    • - применения материалов и конструкций, не соответствующих проекту;
    • - низкого качества строительно-монтажных работ;
    • - использования необычных или неапробированных методов возведения;
    • - плохого контроля за качеством исполнении строительства, неудовлетворительного взаимодействия проектировщиков и строителей;
    • - низкой квалификации производственного персонала или их частой смены;
    • - неудовлетворительной обстановки на стройке: недостаток времени, средств, плохие взаимоотношения персонала;
    • - отступлений от строительных норм и правил строительной практики при строительстве сооружения, отступлений от первоначального проекта;

    Некачественная эксплуатация может возникнуть вследствие:

    • - превышения нагрузок над расчетными проектными величинами;
    • - отсутствия контроля за состоянием сооружения и эксплуатации сооружения с неустраненными дефектами;
    • - отступлений от правил эксплуатации, использования сооружения не по назначению.

    Анализ аварий показал, что при несоблюдении любого из указанных условий возможна авария строительного объекта.

    Определение вероятности аварии производится на основании анализа объемно-планировочных и конструктивных решений, влияющих на надежность сооружений, использования экспертных оценок, а также расчетных данных или материалов натурных обследований.

    Опросная анкета, на которую анонимно отвечают эксперты, содержит ряд оценочных условий, каждое из которых имеет свой удельный вес, с общей суммой всех условий, равной 1 (см. прил. 3). В этом приложении приведены типовые условия анализа надежности сооружения с учетом особенностей проектирования и условий эксплуатации.

    В конкретных условиях, при необходимости, может быть проведен анализ надежности проекта с учетом дополнительных требований, а число условий может быть увеличено или изменено.

    Каждое условие оценивается по балльной шкале и имеет пять вариантов ответа: 1 (неприемлемо), 2 (неудовлетворительно), 3 (удовлетворительно), 4 (хорошо), 5 (отлично).

    Условную надежность здания или сооружения β определяют по формуле

    где Р i - удельная оценка надежности, получаемая умножением удельного веса условия на оценку в баллах.

    Полученные значения для сооружения сравнивают со шкалой оценок надежности (табл. 6.1).

    Таблица 6.1. Шкала оценок надежности и вероятности аварии сооружений по экспертным опенкам

    Хотя определение подверженности сооружений аварии по приведенной методике может быть выполнено довольно приблизительно, однако преимуществом указанной методики является меньшая ее зависимость от субъективных оценок.

    Для более достоверной оценки надежности сооружения и определения возможных аварийных ситуаций осуществляется проверка несколькими независимыми экспертами.

    В случае неблагоприятного прогноза назначают дополнительные меры по проверке достоверности исходных материалов для проектирования, качества проектных решений, процессов строительства и эксплуатации с целью выявления и устранения причин возможного снижения степени надежности объекта.

    Помимо экспертных оценок надежность проекта сооружения может быть установлена из анализа сооружения как конструктивной системы, состоящей из отдельных конструкций, связанных между собой в определенной последовательности и находящихся во взаимодействии с различными событиями.

    Опыт строительства показал, что различные конструктивные системы сооружений одинакового назначения могут обладать различной надежностью, а аварии случаются тогда, когда один или несколько совместных отказов в составе системы приводит к опасной ситуации.

    Решение сложной проблемы установления отказа всей системы производится методом ее упрощения путем построения так называемого логического древа отказов.

    Древо отказов является графическим представлением взаимосвязей между исходными отказами отдельных элементов системы и событиями, приводящими к возникновению различных аварийных ситуаций, соединенных логическими знаками "и", "или".

    Исходными отказами являются события, для которых имеются данные о вероятности их возникновения. Обычно это отказы элементов системы: разрушение конструкций и узлов соединения конструкций, различные инициирующие события (ошибки персонала при эксплуатации, случайные повреждения и т.п.).

    Установление надежности сооружения начинают с предварительного анализа опасностей, которые затем используют при построении древа отказов.

    Анализ проводят на основе изучения процесса работы и эксплуатации конструктивной системы, детального рассмотрения воздействий окружающей среды, существующих данных по отказам аналогичных сооружений.

    Прежде всего определяют, что является отказом системы, и вводят необходимые ограничения на анализ. Например, устанавливают необходимость учета интенсивности и повторяемости землетрясений, аварий оборудования, рассмотрения только начального отказа сооружения (отказа в начальный срок эксплуатации) или отказа в течение всего срока службы и т.п.

    Затем выявляют элементы системы, которые могут вызвать опасные состояния, например, конструкций, узлов соединений, грунтов оснований и фундаментов сооружения, внешние инициирующие события и т.д. При этом ставят вопрос, что будет с системой, если произойдет отказ какого-либо из элемента.

    Для того чтобы получить количественную оценку надежности с помощью древа отказов, нужно иметь данные об исходных отказах. Эти данные могут быть получены на основе опыта эксплуатации отдельных строительных объектов, экспериментов и экспертных оценок специалистов.

    Построение древа отказов производят с соблюдением определенных правил. Вершина древа обозначает конечное событие. Абстрактные события заменяют на менее абстрактные. Например, событие "авария нефтяного резервуара" заменяют на менее абстрактное событие "разрушение резервуара".

    Сложные события разделяют на более элементарные. Например, "отказ резервуара" (рис. 6.1), который может произойти в течение срока его службы, разделяют на отказ в стадии испытания и отказы в первые и последующие 10 лет эксплуатации. Такое разделение вызвано различными причинами отказов: начальной надежностью сооружения и накоплением повреждений в результате длительной эксплуатации.

    Рис. 6.1. Древо отказов стального нефтяного резервуара при эксплуатации

    При построении древа отказов с целью упрощения обычно не включают события с очень малой вероятностью.

    Количественным показателем отказа системы является вероятность (Q) возникновения одного отказа в течение принятого срока эксплуатации. Надежность системы (Р ) определяется выражением

    Если система состоит из i элементов, соединенных с помощью знака "или", ее отказ будет определяться как

    где q, - вероятность отказа i-го элемента системы.

    При малой величине q i формулу (6.3) можно приближенно выразить как

    Для системы или подсистемы из i элементов, соединенных знаком "и", отказ будет

    Таким образом, исследование надежности конструктивных систем позволяет решить несколько важных для практики задач: качественно оценивать надежность запроектированного строительного объекта и в случае повышенной опасности осуществлять мероприятия для ее повышения, определять при проектировании относительную надежность сооружения для различных вариантов конструктивных схем, количественно оценивать надежность сооружений и безопасность окружающей среды.

    Определение ожидаемого ущерба и дестабилизирующих факторов

    Ожидаемый ущерб от природных и техногенных воздействий зависит от двух основных дестабилизирующих факторов:

    • - интенсивность и частота природных и техногенных воздействий на здания и сооружения;
    • - инженерные (количественные) знания о сопротивляемости или защищенности строительных объектов и селитебных территорий от разрушительных воздействий техногенных и природных явлений.

    Алгоритм расчетов и оценки экономических последствий от ожидаемых воздействий следующий.

    Для природных воздействий:

    • - определяют научно обоснованную возможность возникновения разрушительных природных явлений на рассматриваемой территории, способных нанести вред инженерным сооружениям (транспортные коммуникации, объекты гидротехники и энергетики), промышленным и гражданским объектам;
    • - оценивают вероятность возникновения каждого вида природных воздействий, их интенсивность и частоту повторяемости;
    • - определяют состояние грунтовой среды и устанавливают прочностные характеристики несущих и ограждающих конструкций;
    • - выполняют комплекс аналитических работ и инженерных расчетов по определению надежности работы фундаментов и сопротивляемости строительных конструкций нагрузкам, возникающим при природных и техногенных воздействиях за расчетный период эксплуатации;
    • - выполняют работы по усилению конструкций зданий и сооружений, если в этом есть необходимость, по изменению схем транспортных коммуникаций (например, в лавиноопасных районах или на селевых участках) и другие необходимые решения.

    Для техногенных воздействий:

    • - определяют возможность возникновения техногенных аварий и вероятность их возникновения;
    • - оценивают влияние техногенных аварий на окружающую среду и безопасность проживания населения;
    • - рассматривают возможность предотвращения или предупреждения техногенных воздействий;
    • - выполняют работы по реконструкции и модернизации объекта для повышения уровня безопасности и надежности потенциально опасных объектов;
    • - разрабатывают мероприятия по локализации воздействия аварии на окружающую среду и для защиты населения и производственного персонала.

    По данным ожидаемых воздействий и определению возможных повреждений и разрушений строительных объектов и наносимому вреду окружающей среде подсчитываются расчетные значения ущерба и убытков, как в сфере экономических потерь, так и в вопросах здоровья и жизнедеятельности населения. При этом рекомендации и выводы могут быть восстановительного характера либо реконструкции и модернизации, а также кардинального изменения структуры экономики района и даже переселения населения из районов с серьезными опасностями и ущербами, которые экономически развивать нецелесообразно (например, в районах сильных землетрясений, постоянных наводнений и сходов лавин). В каждом конкретном случае должны выполняться квалифицированный анализ и серьезное общественное обсуждение.

    Разработка мероприятий по повышению надежности строительных объектов и жизнедеятельности населения

    Для обеспечения надежности строительных объектов должны быть определены прочностные характеристики зданий и сооружений и выполнены сопоставления их со всеми видами нагрузок и воздействий, которые могут возникнуть за расчетный период эксплуатации.

    При обнаружении недостаточной устойчивости и несущей способности строительных объектов по отношению к действующим нагрузкам и воздействиям должны выполняться следующие виды работ:

    • - обследуют с помощью приборов и инструментов все объекты, надежность которых вызывает сомнения или опасения;
    • - определяют прочностные характеристики несущих конструкций и оценивают состояние грунтов оснований с учетом их поведения при вибрационных и других нагрузках, способных снизить устойчивость грунтовой среды или вызвать повреждения фундаментов;
    • - разрабатывают проект усиления или реконструкции, исключающий повреждения или разрушения объекта либо потерю его общей устойчивости при возможных и ожидаемых нагрузках и воздействиях в чрезвычайных ситуациях;
    • - в соответствии с разработанным проектом выполняют необходимый комплекс усиления или реконструкции строительного объекта;
    • - осуществляют строгий контроль качества исполнения строительно-монтажных работ с учетом повышенных требований, предусмотренных нормами и стандартами для районов с высокими нагрузками и воздействиями;
    • - при выполнении строительно-монтажных работ необходимо требовать сертификат качества на используемые материалы и конструкции с гарантированными сроками долговечности в течение расчетного периода эксплуатации объектов;
    • - осуществляется согласно нормам и стандартам приемка в эксплуатацию усиленного либо реконструированного объекта в соответствии с материалами проекта и данными фактического исполнения;
    • - разрабатывают рекомендации по эксплуатации зданий и сооружений с учетом обеспечения их надежности и долговечности при максимальных расчетных нагрузках и воздействиях в течение нормативного периода.

    Надежность. - это свойство машины, ее узла или детали выполнять заданные функции, сохраняя свои эксплуатационные показатели (производительность, мощность, расход энергии, точность и др.) в заданных пределах в течение требуемого промежутка времени или требуемой наработки (в километрах, гектарах, кубометрах, циклах или др.)

    Терминология по надежности в технике распространяется на любые технические объекты-изделия, сооружения и системы, а также их подсистемы, рассматриваемые с точки зрения надежности на этапах проектирования, производства, испытаний, эксплуатации и ремонта. В качестве подсистем могут рассматриваться сборочные единицы, детали, компоненты или элементы. При необходимости в понятие "объект" могут быть включены информация и ее носители, а также человеческий фактор (например, при рассмотрении надежности системы "машина-оператор").

    На стадии разработки термин “объект” применяется к наугад выбранному представителю из генеральной совокупности объектов.

    Надежность - комплексное свойство, состоящее в общем случае из безотказности, долговечности, ремонтопригодности и сохраняемости. Например, для неремонтируемых объектов основным свойством может являться безотказность. Для ремонтируемых объектов одним из важнейших свойств, составляющих понятие надежности, может быть ремонтопригодность.

    Безотказность - свойство объекта непрерывно сохранять работоспособное состояние в течение некоторого времени или наработки.

    Долговечность - свойство объекта сохранять работоспособное состояние до наступления предельного состояния при установленной системе технического обслуживания и ремонта.

    Ремонтопригодность - свойство объекта, заключающееся в приспособленности к поддержанию и восстановлению работоспособного состояния путем технического обслуживания и ремонта.

    Сохраняемость - свойство объекта сохранять в заданных пределах значения параметров, характеризующих способности объекта выполнять требуемые функции, в течение и после хранения и (или) транспортирования.

    Объект - техническое изделие определенного целевого назначения, рассматриваемое в периоды проектирования, производства, испытаний и эксплуатации.

    Элемент - простейшая составная часть изделия, в задачах надежности может состоять из многих деталей.

    Система - совокупность совместно действующих элементов, предназначенная для самостоятельного выполнения заданных функций.

    12 .Показатели безотказности: вероятность безотказной работы, средняя наработка до отказа, интенсивность отказов, параметр потока отказов, наработка на отказ. Закон Вейбулла для характеристики распределения отказов, типичная кривая изменения плотности вероятности отказов в процессе эксплуатации объектов.


    Вероятность безотказной работы - это вероятность того, что в пределах заданной наработки отказ объекта не возникает. На практике этот показатель определяется статистической оценкой

    где N0 - исходное число работоспособных объектов, n(t) - число отказавших объектов за время t.

    Средняя наработка до отказа Математическое ожидание наработки объекта до первого отказа.

    Наработка до отказа - эквивалентный параметр для неремонтопригодного устройства. Поскольку устройство неремонтируемое, то это просто среднее время, которое проработает устройство до того момента, как сломается.

    Наработка - продолжительность или объем работы объекта, измеряемая в часах, мото-часах, гектарах, километрах пробега, циклов включений и др.

    Измеряется статистически, путём испытания множества приборов, или вычисляется методами теории надёжности.

    Т = 1/m * Σti где ti - наработка i-го объекта между отказами; m - число отказов.

    Интенсивность отказов. Условная плотность вероятности возникновения отказа объекта, определяемая при условии, что до рассматриваемого момента времени отказ не возник. Интенсивностью отказов называется соотношение числа отказавших образцов аппаратуры в единицу времени к среднему числу образцов, исправно работающих в данный отрезок времени при условии, что отказавшие образцы не восстанавливаются и не заменяются исправными.

    Параметр потока отказов. Отношение математического ожидания числа отказов восстанавливаемого объекта за достаточно малую его наработку к значению этой наработки.